

RISK MINIMIZATION FOR DECARBONIZING HEATING NETWORKS VIA NETWORK TEMPERATURE REDUCTIONS: OPPORTUNITIES AND CHALLENGES, EXPERIENCE FROM AUSTRIA AND OUTLOOK SÉMINAIRE ÉNERGIE – ENVIRONNEMENT, Conférences 2022 – 2023 Jeudi 30 mars 2023, Université de Genève

Ralf-Roman Schmidt, AIT Austrian Institute of Technology GmbH

AKNOWLEDGEMENTS

- This presentation has been created using content from the projects.
 - <u>T2LowEx</u> (project no. 858747): funded within the framework of the 3rd call of the Energy Research Programme of the Climate and Energy Fund
 - **<u>TEMPO</u>**: funded from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768936
 - <u>IEA DHC Annex TS2</u>: The Austrian participation in the IEA DHC Annex TS2 was financed by the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK)
 - <u>HeatHighway</u>: funded by the Climate and Energy Fund of the Federal Government of Austria within the framework of the Energy Model Region NEFI and the Austrian State of Upper Austria
 - DeRiskDH: funded by the Climate and Energy Fund of the Federal Government of Austria within the framework of the Energy Model Region Green Energy Lab

CONTENT

- AIT Austrian Institute of Technology GmbH an introduction
- District heating in Austria, status and challenges
- DH temperatures as a key element for decarbonisation
 - positive effects of reduced system temperatures
 - Business models for reducing district heating return temperatures
 - How to identify reasons for high return temperatures?
- Seasonal energy storages
- Risk assessment using monte-carlo-simulations
- Outlook

4

AIT AUSTRIAN INSTITUTE OF TECHNOLOGY

03/04/2023

AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GMBH

OWNERSHIP STRUCTURE

49.54 % FEDERATION OF AUSTRIAN INDUSTRIES (through VFFI)

50.46 %

REPUBLIC OF AUSTRIA

Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology

1.400

EMPLOYEES

167 m EUR

TOTAL REVENUES as of YE 2019

90,4 m EUR Contract research revenues (incl. grants)
49,8 m EUR BMK funding
22,8 m EUR Other operating income, incl. Nuclear Engineering Seibersdorf
4,0 m EUR Profactor (51% of 7,9 m EUR)

AIT CENTER FOR ENERGY – FACT & FIGURES

- 240+ researchers & scientists
- Diverse competence fields & teams
 - 25+ nationalities
 - engineering, physics, architecture, IT ...
- 9 Research Fields
- 145+ scientific publications per year

• 3 Strategic research domains

CENTER FOR ENERGY: TOPICS

ENERGY CONVERSION & HYDROGEN

- Sustainable Technologies for a hydrogen based energy system
- Functional coatings for energy conversion technologies
- Digital material development based on processing and AI
- Performance & reliability of renewable energy technologies
- Digital operation & maintenance of photovoltaic systems

CLIMATE-RESILIENT URBAN PATHWAYS

- Framework for climate-resilience
- Urban climate models
- Nature-based solutions
- Modelling and design of infrastructure interventions
- Climate resilience pathways
- Visualisation and co-creation in City Intelligence Lab (CIL)

SMART & CARBON NEUTRAL URBAN DEVELOPMENT

- City analytics and monitoring platforms
- Urban energy and green house gas emission models
- Upscaling of smart city solutions
- Impact assessment of Energy, Mobility and ICT
- Visualisation and co-creation in City Intelligence Lab (CIL)

CENTER FOR ENERGY: TOPICS

INTEGRATED ENERGY SYSTEMS

- Energy markets
- Flexibility
- Hybrid energy systems (District heating and cooling, Industrial energy systems, Hydrogen)
- Integrated transport
 optimization

POWER SYSTEM PLANNING & OPERATION

- Power grids as part of an integrated energy infrastructure
- Grid planning and operation with distributed generation, flexibility, e-mobility, storage
- Low inertia systems, hybrid AC/DC Systems

EFFICIENCY IN INDUSTRIAL PROCESSES & SYSTEMS

- Industrial Heat Pumps
- Industrial thermal energy storage
- Simulation and optimisation of industrial processes
- Decarbonisation pathways for industry

DISTRICT HEATING IN AUSTRIA

03/04/2023

DISTRICT HEATING IN AUSTRIA

- > 2,400 systems (incl. many rural networks)
- DH share = 27%
- (for buildings with > 20 apartments: 55%)

https://www.gaswaerme.at/media/medialibrary/2019/09/zasp19_endversion.pdf https://www.biomasseverband-ooe.at/uploads/media/Downloads/Publikationen/Bioenergie_Atlas/Bioenergie-Atlas_Oesterreich_2019_klein.pdf

DISTRICT HEATING DECARBONIZATION SCENARIO

Herbert Lechner: Szenario zur Dekarbonisierung der Fernwärme in Österreich, Fernwärmetage, 9. März 2020

TRIAN INSTITUTE

TRENDS AND DRIVERS: LESS CHP, NEW HEAT SOURCES REQUIRED

- The role of CHP as a dominant heat source will significantly change
 - Declining role of fossil fuels, strong <u>competition for renewable fuels</u>
 - <u>Less CHP based electricity</u> required due to more PV and wind
- Other heat sources are required (stable demand in DHC can be expected), e.g.
 - Cooling of data centres, office buildings, super markets etc.,
 - Waste heat from (future) industrial processes, tunnels, or electrolyses processes,
 - Power-to-heat from excess electricity (e.g. avoiding curtailment in areas with weak el. network),
- However, those sources often have low temperatures, appear in decentralized locations, is owned by third parties + have a seasonal mismatch
 - In turn, the <u>use of Biomass (and synthetic fuels on H2-basis)</u> is a solution currently preferred by many (Austrian) DHC operators (stick to the "Business-as-usual" scenario)

- Geothermal
- Heat pump
- Waste heat
- Solar thermal
- Flue gas condensation
- Combined heat and power
- Storage
- Distribution

POSITIVE EFFECTS OF REDUCED SYSTEM

lower supply costs

lower distribution costs

alternative heat cources

better integration of

TEMPERATURES

Reduced temperatures ...

... enables ...

This part of the presentation is an extract from https://www.iea-dhc.org/the-research/annexes/2017-2021-annex-ts2

and

https://energieforschung.at/projekt/transformation-von-konventionellen-waermenetzen-inrichtung-niedertemperaturnetze-durch-sekundaerseitige-massnahmen/

13

POSITIVE EFFECTS OF REDUCED SYSTEM TEMPERATURES

- More **geothermal heat** extracted from wells since lower-temperature geothermal fluid can be returned to the ground.
- Less electricity used in **heat pumps** when extracting heat from heat sources with temperatures below the heat distribution temperatures since lower pressures can be applied in the heat pump condensers.
- More **industrial excess** heat extracted since lower temperatures of the excess heat carrier will be emitted to the environment.
- More heat obtained from **solar collectors** since their heat losses are lower, thereby providing higher conversion efficiencies.

POSITIVE EFFECTS OF REDUCED SYSTEM TEMPERATURES

- More electricity generated per unit of heat recycled from **steam CHP** plants since higher p-t-h ratios are obtained with lower steam pressures in the turbine condensers
- More heat recovered from **flue gas condensation** since the proportion of vaporised water (steam) in the emitted flue gases can be reduced.
- Higher **heat storage** capacities since lower return temperatures can be used in conjunction with high-temperature outputs from high-temperature heat sources.
- Lower heat distribution losses with lower average temperature differences between the fluids in heat distribution pipes and the environment.
- The ability to **use plastic pipes** instead of steel pipes to save cost.

EVALUATION METHODOLOGY

- Thermodynamic models have been used to investigate capacity and efficiency improvements.
- cost data were derived from extant literature, with indicative cost estimations from manufacturers
- → calculate the **levelized cost of heat (LCOH)** determined for both reference and assessment cases.

ESTIMATION OF THE MONETARY EFFECTS FOR AUSTRIA

AUSTRIAN INSTITUTE

BUSINESS MODELS FOR REDUCING DISTRICT HEATING RETURN TEMPERATURES

////////

This part of the presentation is an extract from <u>https://energieforschung.at/projekt/transformation-von-konventionellen-waermenetzen-in-</u> <u>richtung-niedertemperaturnetze-durch-sekundaerseitige-massnahmen/</u>

VICIOUS CIRCLE OF HIGH SYSTEM TEMPERATURES

ADDED VALUE OF LOW SYSTEM TEMPERATURES

HOW TO REDUCE THE SYSTEM TEMPERATURES?

- Counter measures for correcting building side faults are well known and manageable
- The person supposed to bear the investment for optimization (building owner) is often different than person profiting from lower return temperatures (operator)

Identification of suitable business models

POSSIBLE **BUSINESS MODELS** FOR REDUCING

Paolo Leoni, Roman Geyer, Ralf-Roman Schmidt, Developing innovative business models for reducing return temperatures in district heating systems: Approach and first results, Energy, Volume 195, https://doi.org/10.1016/j.energy.2020.116963

(REFERENCE) BM-1: **UTILITY OWN INVESTMENTS**

- The utility takes over the investment and implements the return temperature-reducing measures. Repayment via savings in operational costs.
- **Strength/ Opportunities** Weaknesses/Threats Standard model Availability of technical staff? utilities have know-how for correcting faults Investment risk lies with the utility Can be implemented directly Possibly access restrictions? Some installations are complex Lack of interest in investing in customer plants + liability issues

AUSTRIAN INSTITUTE OF TECHNOLOGY

BM-2: MOTIVATIONAL TARIFFS

 The customer takes over the investment or carries out the measures. Repayment of the investment via a bonus (malus) tariff depending on the return temperature.

Strength/ Opportunities

- Best practice examples available
- can be implemented directly by the utility
- Easily scalable
- Encourages behavioral change
- Risks remain with the customer
- Repayment of investments via lump sum rent including heating
- Digitalisation for visualisation
- Initiation of competition between
 03/04/2029 ustomers?

Weaknesses/Threats

- Investor-user dilemma
- High complexity of the tariff
- Low customer satisfaction in case of malus
- Often long-term heat supply contracts
- Customer has little knowledge of and access to the system
- Billing according to temperature levels not permitted?

BM-3: LOAN

• External investors (e.g. crowdfunding) take over the investment. Repayment over an agreed period of time.

Strength/ Opportunities

- New financing channels for the utility
- Citizen participation models/ investment in environmentally friendly/ long-term projects.
- Use within cooperatives?
- Utilisation of online platform increases visibility of the utility and transparency + Additional services possible

Weaknesses/Threats

- Guarantees regarding repayments?
- Data protection with regard to customer installations
- Cannot be implemented without further ado

03.04.2023

BM-4: CONTRACTING

- An external contractor implements the measures (e.g. tendering according to the best bidder principle) Repayment of the investments via sharing of the real savings.
- Strength/ Opportunities
- Measures are cost-effective due to economies of scale.
- Sharing of the risk between the contractor and the utility.
- Utility companies can act as contractors outside their own network area (increase in staff utilization).

Weaknesses/Threats

- Often short-term view of the contractors
- Negative relationship between utility and customer in case of failure
- Complicated contract design
- Measures for customer data protection
- cannot be implemented easily

COST-BENEFIT ANALYSIS AND SELECTION OF SUITABLE BUSINESS MODELS

valuation of business models for return temperature reduction in district heating networks					
ERSION 0.5, 17.11.2020 opyright ® 2020 AIT Austrian Institute of Technology GmbH. All Flights Reserved.	TOMORROW TODAY				
ntroduction					
his tool has been developed within the Austrian project T2LowEx (FFG-Nr. 858747) with the inte ne definition of business models for return temperature reduction in DH networks. The tool consi	ention to support district heating (DH) utilities in ders a list of possible secondary-side				

the definition of business models for return temperature reduction in DH networks. The tool considers a list of possible secondary-side optimization measures and evaluates costs and benefits of user-selected scenarios. The approach consists of the following steps:

- Inputs from user to specify network and building paramenters

- Inputs from user to parametrize the possible business models
 Cost-benefit-analysis of measures for individual buildings
- Cost-benefit-analysis of measures for individual buildings
 User selects measures and business models for individual buildings
- User selects measures and business models for individual buildings
 Scale-up on the entire DH network and calculation of the business model KPIs

Input in the yellow cells are mandatory Input in the light-yellow cells are optional

Sheets:	Description:
AND A DOME TO	
I. Network and building data	Prease enter the requested data of the Lim network and of the buildings to be optimized, buildings can be clustered in max. 3 types,
2. Business Model data	Please enter the requested data for the parameterization of the four business models: - Business Model 100: of the optimization investment is paid by the DH utility - Business Model 2: Customer investment is paid by the DH utility - Business Model 2: Customer investment is paid by the DH utility - Business Model 4: Energy-saving contract
3a. Measure assumptions	Overview of the model assumptions on measure costs, effects and life time Changes are optional
3b. Measure check	This sheet reports costs and effects of measures calculated for each building type based on model assumptions The user can overrite the values in the yellow cells in case more reliable data is available <i>Changes are optional</i>
4. Business Model selection	This shear reports KPE calculated for the four defined business models Based on threse KPIs, the user can select the business model for each measure and for each building type Please enter in the yellow cells the value I (stelected) of Unot selected) It is possible to select up to one measure per building type and business model
Aggregated results	Scale-up over the entire network considering that the measures and business models selected for each building type in the sheet before are implemented: - CAPEX of the involved stakeholders - Effects on the network operation - NPV for the DH utility after 5, 10, and 15 years

Input:

- Data on the network, buildings, tariff
- Measures, costs, effects (CRG), life time
- BM specific data (interest rate, height of the bonus, duration of contract ...)

output:

- Building-specific costs and effects
- KPI calculations, selection of BM
- Results scaled to network level

→ Use of the tool in the case studies of the project partners

COST-BENEFIT ANALYSIS AND SELECTION OF SUITABLE BUSINESS MODELS

- Example: implementation of a motivational tariff in a DH network
 - Standard price at return temperatures between: 55,1 60° C
 - 1.8% / 3.5% / 5.1% reduction at: 50,1 55° C / 45,1° C 50° C / < 45° C
 - The customer was implementing different optimization measures
- The resulting **economic effects were evaluated** using the excel tool for two different DH networks:

Network 1	CRG = 0.21	€/(MWh K)
-----------	------------	-----------

Network 2: CRG = 1.08 €/(MWh K)

NPV for DH utility [€]			I	NPV for DH utility [€]			
After 5 years After 10 years		After 15 years	After 5 years	After 10 years	After 15 years		
- 76.933	- 69.709	- 64.310	- 34.396	4.614	33.764		

30

HOW TO IDENTIFY REASONS FOR HIGH RETURN TEMPERATURES?

03/04/2023

CHARACTERIZATION OF TYPICAL FAULTS IN DISTUTE BUILDING INSTALLATIONS

- The main reason for high temperatures lies on the secondary side: the building installations
- Various faults can occur, including wrong design of heat exchanger or radiators, false setpoints, sensor misplacement, valve misfunctions, unnecessary bypasses, user behaviour ...
- This faults do not actually affect the thermal comfort. Thus, customers are often unaware of them.

heat_portfolio (FFG-Nr. 848849), Deliverable D6.1 & D6.2, https://www.energieforschung.at/assets/project/downloads/heatportfolio-D6.1-D6.2.pdf 31

FAULT **IDENTIFICATION** BY ANALYSES OF MONITORING DATA

- Example: Application of a self-learning algorithm for fault detection using monitoring data
- Training data based on simulation of building and technical system
- Accounting for variability in parameters (constructions, systems, occupancy...)

This part of the presentation is an extract from https://www.tempo-dhc.eu/wp-content/uploads/2022/03/4-TEMPO-Challenges-andsuccess-in-Brescia.pdf

DEMONSTRATION IN THE DH NETWORK OF BRESCIA (ITALY)

- 680 km network length
- > 21.500 customers
- 1.000 GWh supplied heat
- Supply / return temp: 90°C ÷ 130°C / 60°C;
- Supply via: Waste to Energy, CHP + heat recovery
- Demonstration of the fault detection algorithm in 31 multi family houses (MFH) distributed in the city

IMPLEMENTED ACTIVITIES

2. Fault detection by AIT

Analysing the individual performance / possible faults
Provide an online guide for auditing building installations
Visualization for non-experts

1. Extraction of monitoring data from the MFH by a2a

4. Building managers involves their technicians + Technicians (can) get in discussion with a2a on possible improvements

3. a2a sends simplified reports to the managers of the worst performing buildings

https://www.tempo-dhc.eu/wp-content/uploads/2022/03/4-TEMPO-Challenges-and-

EXAMPLE RESULTS

1. high return temp. have been **identified by the algorithm**

2. the communication with the local technicians revealed the reason for this behaviour (heat exchanger fouling, and cleaned in Dec.) + counter measures were suggested to avoid fouling in the future

TEMPERATURE REDUCTIONS

- **High DH network temperatures** create a fatal lock-in effect and significantly reduce the potential for decarbonization
- Future prove DH networks will be dominated by diversified, alternative heat source where low system temperatures will have a significant benefit
- **Digitalization and AI** can support the identification of optimization potentials and the implementation of business models
- For implementing measures to reduce system temperatures the customer needs to be involved, creating win-win situations
- Every **involvement and communication towards the customer** is sensitive and needs to be planned carefully;
- Contractual terms as well as responsibilities / ownership must be carefully evaluated when proposing activities on customers side;

SEASONAL ENERGY STORAGES

https://nachhaltigwirtschaften.at/resources/nw_pdf/events/202111 23/2-2_Deix_van_Helden_WimvanHelden.pdf?m=1637609879&

USING SURPLUS HEAT IN WINTER TIMES

EXAMPLE:

- Model-based optimization of the future supply portfolio of a district heating network (medium-sized city) in Austria
 - For a long-term and holistic view of the heat supply an optimised "no regrets" heat and gas strategy for the entire province was developed, including
 - supply of green biomethane & hydrogen;
 - heating demand and supply
 - rural and **urban district heating network**
 - Decentralized heating sector
 - Industrial heating / gas demand
 - Infrastructure/ gas grid

AIT DISTRICT HEATING DECARBONIZATION **MODELLING & OPTIMIZATION FRAMEWORK**

- **Method**: Mixed integer optimization, objective function: minimisation of the discounted total system costs, consideration of
 - **energy price fluctuations** (forecasts of gas and electricity prices)
 - Different degrees of district heating expansion
 - current and potential new heat supply technologies + storages
 - grid transmission capacities.
- Model horizon: from 2026 to 2050.
 - Use of four base years and 6 representative weeks; temporal resolution: 3h (achieving acceptable computation time and convergence).
- **Results**: Optimal investment path (incl. plant sizes), heat production costs etc.

CONSIDERED TECHNOLOGY OPTIONS

- Existing plants + possible new plants
 - CHP (extraction condensation, back pressure); heat only boilers, waste incineration
 - heat pumps, solar- + geothermal energy, waste heat
 - Large-scale storage (steel tank, PIT storage)
- Plants with multiple energy flows
- Partial load behaviour
- Various interconnected sub-grids
- Remark heat pumps:
 - Operation is optimised according to electricity prices
 - Cascade interconnection / Return temperature reduction
 - Better utilisation of geothermal energy
 - Increase in storage capacity
 - Different operating modes and COPs for the same heat pump

RESULTS: <u>WITHOUT</u> SEASONAL STORAGE

RESULTS: <u>WITH</u> SEASONAL STORAGE

SEASONAL STORAGES

- Large-scale storages create a seasonal balance (move surpluses heat from the summer (waste heat, geothermal energy, HP, CHP ...) to the winter) + are also important for short-term flexibility
 - Optimization of use of sector coupling technologies (**HP**, **CHP**)
 - Reduction of **biofuel** demand
- Can be **economic feasible** if low costs of surplus heat is available, the costs of biofuels is high and long observation periods are considered

• CONTRA:

- Space requirement, additional grid infrastructure may be necessary.
- Possibly acceptance problems?
- Technology availability (largest storage so far = 0.2 million m3) and feasible temperature levels

RISK ASSESMENT USING MONTE-CARLO-SIMULATIONS

This part of the presentation is an extract from https://iewt2023.eeg.tuwien.ac.at/download/contribution/presentation/266/266_prese ntation_20230223_100053.pdf

51

03/04/2023

MOTIVATION

- The development of district heating networks or their decarbonization is associated with considerable uncertainties
 - **Electricity** prices (average values and hourly fluctuations)
 - Prices of renewable fuels (especially H2, biomethane and biomass),
 - Availability of alternative heat sources (especially **waste heat**, but also deep geothermal energy) and seasonal storage.

CASE STUDY: INTERREGIONAL HEAT SUPPLY

- Identification of the most promising heat sinks and sources (8 industrial waste heat suppliers + existing biomass heating plants).
- Elaboration of a **basic pipeline route** + costs
- Calculation of economic efficiency via seasonal balances (no optimisation)
- Performing a risk analysis in comparison to an "individual" heat supply using Monte Carlo simulation

Focus of this presentation

METHOD 3 1 2 5 6 7 Aggregation from hourly to PDF/CDF(a) 9/M seasonal 80% Scenario definition values 709 8 60% Generating 50% PDF/CDF(b) random **SEEET - Seasonal Energy** Economic 40% 30% Economic Evaluation Tool assessment 20% samples a_i, b_i, c_i PDF/CDF(c) 125 130 90 100 105 110 LCOH in €/MWh Einzel HHW 12000 12000 14000 1 Monte Carlo simulation: Assembly of all trial results into Assignment of Heat Heat AIT Internal conduct i trials (repeat steps i Config. output distribution and calculate PDF's/CDF's supply dem. calculation Tool times) the risk **Electricity Price** • Input data for the simulation tool Gas Price ٠ **Biomass Price** ٠

 Waste heat availability

DEFINITION OF THE UNCERTAINTY FACTORS

- Houerly electricity prices
- Monthly biofuel prices
- Yearly biomethane prices (= Gas price + Premium)

Source: Gas price: EU Energy Outlook 2060, electricit prices: öffentlich verfügbare Studien, Schwankungen: VAR-Model, Biomassepreise: Biomasseverband

b) Availability of waste heat

- Little data available on when and under what conditions the supply of waste heat fails
- Here: Use of WKÖ statistics on company insolvencies, calculation of the average probability per year.

Lambda draw

- The distribution of the energy price scenarios is described by a beta distribution
- $Price = Lambda \cdot Price_{max} + (1 Lambda) \cdot Price_{min}$

2 SZENARIO DEFINITION

• Example of a draw X

		year, when waste heat is not longer available							
Scenario	Lambda	Waste heat supplier 1	Waste heat supplier 2	Waste heat supplier 3	Waste heat supplier 4	Waste heat supplier 5	Waste heat supplier 6	Waste heat supplier 7	Waste heat supplier 8
Х	0.73	2033	-	2040	-	-	-	-	-

- N draws will be done and handed to the similation tool
- For each draw, the economic full load hours of CHP and WPs are calculated using the hourly electricity prices + aggregated to seasonal values

5 TECHNO-ECONOMIC EVALUATION

- Using the simulation programme "SEEET" (developed within the project <u>MEMPHIS 2.0</u>)
- Consideration of seasonal differences with regard to the main influencing parameters (heat demand and generation, electricity prices, etc.)
- Comparing two configurations

INDIVIDUAL

- Decarbonization on municipal level
- Exchange of oil and coal heating with biomass and heat pumps
- Exchange gas heating with biomethane / biomass/ heat pump

HEAT HIGHWAY

- Connecting all municipalities via a interregional DH transmission network (90% connection rate)
- Maximizing the waste heat utilization
- Integration of large scale CHP and HP

CALCULATION OF THE LEVELIZED COSTS OF ALCOH

LCOH INDIVIDUAL

Energy Cost • Biomass • Electricity • Biomethane

Individual generation plants

DepreciationHeating plant

OPEX All generation units

Reinvest

Assumption: Existing individual plants are at 50% of the service life

LCOH HEAT HIGHWAY

Ф

Energy Cost Biomass Electricity Profits from electricity sales

CAPEX

Individual generation plants

Depreciation

Heating plant Networks

CHP

Large-scale heat pumpStorage

OPEX

All generation units

Reinvest

7 RESULTS (PRELIMINARY)

59

RISK ASSESSMENT

- **Uncertainties** regarding energy prices have a considerable influence on the economic efficiency of **individual** heat supply.
- Compared to individual heat supply options, **district heating** networks can
 - optimize the use of waste heat (favorable base load), utilize
 - heat pumps (use when electricity prices are low) and
 - CHP (use at high electricity prices) and as a consequence, form a very **robust system**
- However, **individual heat pumps** enable the use of locally generated PV, participation in energy communities, provision of cooling, etc., which was not considered in the context of this study

OUTLOOK

OUTLOOK: DeRiskDH

"Risk minimization for decarbonizing heating networks via network temperature reductions and flexibility utilization"

A green energy lab project

• Run-time: 15.01.2023 – 14.01.2026

Optimised buildings

- Analyse and optimize **return temperatures** and **flexibility** of DH connected buildings
- Quantify technical reasons for sub-optimal performance and measures to improve the building performance, understand interactions/ interdependencies

Innovative secondary DH networks

- Develop **robust systems** with low temperatures, **high flexibility**, high share of local heat supply
- retrofitting measures on a district scale
- investigate and implement innovative control algorithms for the buildings, network and substations

Overall DH network analysis

- Analyse technical options for the decarbonization of DH networks
- consider optimized **buildings**, future decentralized low temperatures **supply** units and seasonal **storages**.
- Analyse hydraulic constrains and heat losses

Technical analysis and demonstration

Risk minimisation for decarbonisation

propability

- Monte Carlo simulations for assessing different scenarios and risks
- Evaluating interdependencies on a national energy system level
- considering the effects of return temperature reductions and flexibility utilization from the technical analysis
- Develop a **general understanding** of the different risks and **apply** the methodology

Economic evaluation and replication

business models and framework conditions

- implementing the DeRiskDH solutions
- Cost-benefit assessment
- Stakeholder involvement
- Recommendations (energy planning processes / regulations / subsidies)

Socio-economic perspective

٠

THANKS FOR YOUR ATTENTION!

Dr.-Ing. Ralf-Roman Schmidt

AIT Austrian Institute of Technology GmbH Giefinggasse 2 | 1210 Vienna | Austria M +43(0) 664 235 19 01 | F +43(0) 50550-6679 Ralf-Roman.Schmidt@ait.ac.at | http://www.ait.ac.at