

Sous-Station de Réseau de Chaleur Architecture, Contrôle et Innovation

JEUDI 27 MAI 2021

N. Lamaison

Innovation laboratory for new energy technologies and nanomaterials - www.liten.cea.fr

UNIGE - 27/05/2021

- Donner un aperçu de la technologie actuelle des sous-stations
- Présenter un ensemble de sujets de recherche traités au CEA Liten

-

-

-

Introduction: Généralités sur les réseaux de chaleur et les sous-stations

Architecture et contrôle

- Logique de contrôle globale
- Différentes architectures primaire / secondaire
- Détaille d'une architecture
- Equipements
- Dimensionnement
- Analyse de données
- Challenges futurs

Innovation

- Topic 1: Critical Temperature
- Topic 2: Prosumer Substation
- Topic 3: Innovative Design with Primary Storage
- Topic 4: Advanced Control
- Topic 5: Flat Substation
- Topic 6: Faults detection in substation

GÉNÉRALITÉS SUR LES RÉSEAUX DE CHALEUR ET LES SOUS-STATIONS

DISTRICT HEATING PRINCIPLES

« Les réseaux de Chaleur – Le service chaleur à domicile », Agence française pour la maîtrise de l'énergie, Paris, 1991

UNIGE - 27/05/2021

STATISTICS IN FRANCE

UNIGE - 27/05/2021

Heat loads

Temperature Levels

RATED POWER

40kW

<image>

Flat substation (DHW and SH separated)

300kW

~ 30 poorly insulated housings

700kW

~ 70 poorly insulated housings

10MW

Area Substation between HP and LP networks

Electrical Network Substation	Thermal Network Substation
Voltage Level Lowering	Temperature and Pressure Level Lowering
Significant High to Low Voltage difference	Small High to Low Temperature and Pressure difference
Located far from Buildings and serve a large area (to avoid risks)	Located close to the Building it is supplying (to reduce heat loss)
Transformers	Heat Exchangers and Valves
Fuses	Differential pressure control valve and flow limiters
Utility company ownership	Shared ownership (building owner and utility company)
Very standardized	Standardization still needed to further reduce costs

ARCHITECTURE ET CONTROLE

OVERALL CONTROL LOGIC

UNIGE - 27/05/2021

BASIC PRINCIPLES SUMMARY

Optimal Operation

Reduce the return temperature

- \rightarrow Lower HL in return line
- \rightarrow Higher efficiency of the production units
- \rightarrow Lower mass flow rate in the network

Main layout for building substation

Handbook on Planning of District Heating Networks, EnergieSchweiz

3 main layouts

Direct SH and Closed DHW supply

- + Low cost
- + No HEX pinch for SH
- Reference in Germany / Denmark

Indirect SH and Closed DHW supply

- + Protects hydronic system (pressure surges, corrosion due to oxygen content)
- + Low pressure requirements for hydronic system
- + Reduced damage if leaks
- + Reduced noise propagation
- Reference in Sweden

Intermediate SH circuit

- + Further protected DHW system against HEX leaks with DHN water
- Double HEX pinch for DHW
- SH circuit always higher temperature than DHW temperature
- Sometimes preferred in Germany

Other seldom layouts: No hydraulic separation / open hot water supply / double-walled DHW circuit separation

Type of DHW systems		Domestic hot water	Domestic hot water	
Supply primary Domestic hot water Circulation Teturn primary Cold water		Supply primary Return primary Cold water	Supply primary Circulation Return primary Cold water	
In	stantaneous DHW	Internal HEX Storage Tanks DHW	External HEX Storage Tanks DHW	
 + Even out loads (asynchronous) 		 Better for small SH demand because no need to oversize service lines 	+ Better for small SH demand because no need to oversize service lines	
+	Few space required	+ Peak loads ensured by tank	+ Peak loads ensured by tank	
+	No limit of energy for a draw-offs	+ Insensitive to lime scale	+ Largest storage utilization	
+	Reduced legionella	- Management of legionella	- Management of legionella	
- Demanding for the control system		- Add heat losses (but small)	- Add heat losses (but small)	
	$T_{p,out}$ ~25 – 30°C	$T_{p,out} \sim 45^{\circ}C$	$T_{p,out} \sim 30 - 35^{\circ}C$	

Handbook on Planning of District Heating Networks, EnergieSchweiz

DETAILED LAYOUT

Detailed type of Indirect SH and Closed instantaneous cascading DHW supply

DETAILED LAYOUT

DHW loop

- Control of the valve on DHN side to satisfy a set point on the DHW loop based on legionella constraints
- Set point is generally higher than necessary and will be mixed in the 3way valve to avoid oscillations at the tap level
- Preheater / Postheater configuration to enhance DT because of recirculation sanitary loop
- Check valve on Cold Water Flow side

<u>SH loop</u>

- Control of the valve on DHN side to satisfy a set point on the SH loop based on external temperature measurement
- Control using self-regulating thermostatic valve
- Another valve for emitter isolation or hydraulic balancing
- Variable or Fixed speed circulation pump to maintain flow
- Expansion tank necessary to:
 - \circ set the pressure in the loop
 - compensate for thermal expansion and contraction of heat carrier fluid

DHN loop

- Heat Meter for billing uses 2 temperature sensors and 1 flow meter
- A flow limiter can be used depending on contract with customer to limit energy to transfer and allow more favorable situations for far customers
- Return temperature limiter also exists

1) Night Setback

Save energy at night BUT Generates high space heating loads in mornings

Flow rate increases before effect on return temperature is observed

2) Transition from individual production system

EQUIPMENTS

Tube and Shell Heat Exchanger

- For high temperature and high pressure
- For large Substations (HP network to BP network)
- For old networks
- Problem of leaking after some years

Composed of :

- Tubes (high pressure fluid)
- One Shell and baffles for mixing
- Cross-flow heat exchange configuration

EQUIPMENTS

Plate Heat Exchanger

- Compact and high heat transfer performance
- Can be disassembled
- Number one solution in low temperature networks

Composed of :

- Corrugated plates and gaskets
- Counter-flow heat exchange configuration
- « Hot » fluid flows down every even channel
- « Cold » fluid flows up every odd channel
- Gasketed or Brazed

Control Element

2way Valve

Hydro-Ejector

3way Valve

Instrumentations

Pressure Temperature

Energy Meter

Flow Meter

SIZING PRINCIPLES

Input Nominal Data

- Secondary Temperatures: *T*_{in,s,nom} et *T*_{out,s,nom}
- Heat Load: *Q*_{dem,nom}
- Primary Inlet Temperature: *T*_{in,p,nom}
- Primary Differential Pressure: $\Delta P_{p,nom} = 1 bar$
- Desired Pinch: $\Delta T_{pp,HEX}$

1)
$$T_{out,p,nom} = T_{in,s,nom} + \Delta T_{pp,HEX}$$

2)
$$\dot{m}_{p,nom} = \frac{Q_{dem,nom}}{cp \cdot (T_{out,p,nom} - T_{in,p,nom})}$$

3) <u>Fully Open Valve Authotity</u>: $\beta = \frac{\Delta P_{v}}{\Delta P_{p,nom}} \ge 0.5 \quad \text{with} \quad \Delta P_{v} = \left(\frac{\dot{m}_{p,nom} / \rho}{K_{v,s}}\right)^{2}$

4)
$$\dot{m}_{s,nom} = \frac{Q_{dem,nom}}{cp \cdot (T_{out,s,nom} - T_{in,s,nom})}$$

5) <u>Heat Exchanger Sizing</u> $UA_{HEX} = \frac{Q_{dem,nom}}{DTLM_{HEX}}$ With $DTLM_{HEX} = \frac{(T_{in,p,nom} - T_{out,s,nom}) - (T_{out,p,nom} - T_{in,s,nom})}{\ln \frac{(T_{in,p,nom} - T_{out,s,nom})}{(T_{out,p,nom} - T_{in,s,nom})}}$

And $\Delta P_{HEX} \leq (1 - \beta) \cdot \Delta P_{p,nom}$

SIZING PRINCIPLES

<u>Valve</u>

cea

Heat Exchanger characteristics

Valve Characteristics

Linear

Equal percentage

Always the same relative change in opening for equivalent relative demand variation

UNIGE - 27/05/2021

DATA

Data Analysis – Physical and Sociological Influences

Data Analysis – Large Substation with SH and DHW demand

DATA

- Tubular HEX
- About 300 housings with radiators
- 20000m²
- No DHW storage

DATA

Data Analysis – Physical and Sociological Influences

$$P_{SST} = \begin{cases} P_{DHW,m} \cdot \left(1 + \delta P_{DHW,n,i}\right) & T_{ext} > T_{NH} \\ P_{DHW,m} \cdot \left(1 + \delta P_{DHW,i}\right) + a. \left(T_{ext} + \delta T_{ext,i}\right) + b & T_{ext} < T_{NH} \end{cases}$$

 $\delta P_{DHW,i}$ and $\delta T_{ext,i}$ are normed coefficients that can be reused as is for a similar type of customer

- > Calculation during summer time of:
 - *P*_{*DHW,m*}: mean summer power
 - $\delta P_{DHW,n,i}$: normed weekly coefficient for sociological DHW needs
- > During winter time, the DHW part is then removed and the data are fitted with a model $a.(T_{ext}) + b \rightarrow$ Physical contribution
- > The residuals are then calculated with $P_{SST} P_{SST,fit}$ and are normalized by *a* to obtain residuals in °C
- These residuals represent the equivalent external temperature difference with respect to the current external temperature which would lead to the current demand
- > These residuals are averaged for each time step of the week to obtain $\delta T_{ext,i}$ -> Sociologic contribution

SH sociologic contribution: $\delta T_{ext,i}$

DHW sociologic contribution: $\delta P_{DHWn,i}$

- Night Setback
- Morning and Evening Peaks
- Maybe solar influence explains the peaks differences
- Less pronounced on sunday

- Morning and Evening peaks

CEA CHALLENGES FOR SUBSTATION

In 4th Generation District Heating Network, substations must face the following challenges:

- Implement at fine sampling a digital monitoring
- Reduce the return temperature
- Limit loads on the production plants
- Reinject local surplus
- Reduced cost through standardization
- Combined District Heating and Cooling Substation including heat pumps

STRATEGIC RESEARCH INNOVATION AGENDA FOR DISTRICT HEATING & COOLING AND THERMAL ENERGY STORAGE TECHNOLOGIES, Renewable Heating and Cooling (RHC), European Technology and Innovation Platform

INNOVATION

TOPIC 1:

Aim for the critical temperature at the entrance of the substation for a better supply temperature management in the District Heating Network

Limit loads on the production plants

AIM FOR THE CRITICAL TEMPERATURE

For a given imposed differential pressure DP and a given heat demand on the secondary side, the critical temperature is the lowest possible primary inlet temperature that will satisfy the demand. In other words, it is the temperature that satisfies the demand when the valve is fully open.

AIM FOR THE CRITICAL TEMPERATURE

L. Giraud, « Modélisation dynamique et gestion avancée de réseaux de chaleur », Thèse, 2016

Maximal primary flow rate

$$\dot{m}_{p,max} = \sqrt{\Delta P \left(\frac{\dot{m}_{HEX,nom}^2 \dot{m}_{v,nom}^2}{\Delta P_{HEX,nom} \dot{m}_{v,nom}^2 + \Delta P_{v,nom} \dot{m}_{HEX,nom}^2} \right)}$$

Secondary demanded flow rate

$$\dot{m}_{s,dem} = \frac{Q_{dem}}{cp(T_{s,out,set} - T_{s,in})}$$

Heat Exchanger performance

$$UA_{crit} = UA_{HEX,nom} \frac{\dot{m}_{p,nom,HEX}^{-q} + \dot{m}_{s,nom,HEX}^{-q}}{\dot{m}_{p,max}^{-q} + \dot{m}_{s,dem}^{-q}}$$

Primary critical temperature

$$T_{p,in,crit} = T_{s,in} + \frac{Q_{dem}}{\dot{m}_{p,max}cp} \left[\frac{1 - \frac{\dot{m}_{p,max}}{\dot{m}_{s,dem}} \exp(A_c)}{1 - \exp(A_c)} \right]$$

With
$$A_c = -\frac{UA_{crit}}{cp \, \dot{m}_{s,dem}} \left[\frac{\dot{m}_{s,dem}}{\dot{m}_{p,max}} - 1 \right]$$

TOPIC 2:

Prosumer substation

Reinject local surplus

SOLAR FEED-IN SUBSTATION

H. Lund et al., "The status of 4th generation district heating: Research and results," Energy, vol. 164, pp. 147–159, Dec. 2018

SOLAR FEED-IN SUBSTATION

		Supply/Supply (S/S)	Return/Supply (R/S)	Return/Return (R/R)		G. Lennermo et al., "Control of decentralised solar district heating", Solar Energy, Volume 179, 2019
ТҮРЕ		ADVANTAGES	5	DISAI	OVANTAGES	REMARKS
Supply/Supply (S/S)	• No influ	ence on return line		 Increase supply line Lowest solar field ef Dependent on local Requires a third pipe Temperature Cycling 	temperature ficiency flow rate e g → Pipe Fatigue	Generally never used
Return/Return (R/R) • Highest solar field efficiency		 Increase return line temperature Lowest efficiency of centralized generators Dependent on local flow rate Requires a third pipe Temperature Cycling → Pipe Fatigue 		 Seldom used Generally in combination with R/S 		
Return/Supply (R/S)	 No influ Use of e Do not e 	ence on return line existing service line contribute to pipe fatigu	e	 High feed-in pump of Challenging control Feed-in temperature 	consumption e set by network	Preferred solution

SOLAR FEED-IN SUBSTATION

THERMOSS

Thermoss Project H2020 (2017 - 2020)

Prosumer substation = Feed-In + Consumer Substation

Cea

SOLAR FEED-IN SUBSTATION

TOPIC 3:

Innovative design with primary storage

Limit loads on the production plants

Reduce the return temperature

15°C

- Vidange du chaud à 55°C du ballon -
- Remplissage de froid à 15°C du ballon -
- Lissage de l'appel de puissance

- Vidange du froid à 15°C du ballon
- Remplissage de chaud à 55°C

Diminution température de retour

TOPIC 4:

Advanced Control

Limit loads on the production plants

ADVANCED CONTROL

Demand-Side Management

Prediction of consumption on the horizon

Optimization of the load under internal <u>temperature</u> <u>constraints</u>

Advanced Control

• Towards combined optimization of production, distribution and demand

UNIGE - 27/05/2021

ADVANCED CONTROL

- MILP based MPC for SH demand
- Use of Heating circuit and internal mass for flexibility
- Replacement of WC with demand-side management

3rd order ROM model Non linear heating circuit model \rightarrow linearized for MPC 16 parameters identified with detailed model Identification use data available at the SST (power, flow, T setpoint)

$$f_{obj} = \sum_{n=1}^{N} \begin{pmatrix} p^{energie}[n] \cdot Q_{SST}[n] \cdot \Delta t \\ +p^{sur-chauffe}[n] \cdot \Delta T_{air}^{sur-chauffe}[n] \cdot \Delta t \\ +p^{sous-chauffe}[n] \cdot \Delta T_{air}^{sous-chauffe}[n] \cdot \Delta t \\ +p^{pertes}[n] \cdot \Delta T_{cir}^{pertes}[n] \cdot \Delta t \end{pmatrix}$$

Aoun et al. Modelling and flexible predictive control of buildings space-heating demand in district heating systems, Energy, 2019

cea

ADVANCED CONTROL

Standard WC control using a static heating curve with a night-time set-back limiting $T_{set,cir}$ to 35°C from 11:00 p.m. to 6:45 a.m., $T_{set,air}$ =19.5°C

VS

MILP-based MPC considering fixed energy cost with $\varepsilon_{comf} = 0.5^{\circ}C$ during the day and $\varepsilon_{comf} = 2^{\circ}C$ from 11:00 p.m. to 6:45 a.m.,

RESULTS

- Reduced supplied water temperature exploiting at best the 2°C flexibility and anticipates solar gains
- MPC launches and exists set back period ahead because anticipation of thermal inertia
- Peak-shaving not achieved with constant energy cost

UNIGE – 27/05/2021

TOPIC 5:

Apartment Substation

With an individual substation, the secondary side return temperature is the smallest as possible because component sized for a single user.

DHN return temperature is thus further reduced

Cea

Validation TESTS Space Heating Only (STEADY)

Validation TESTS - Dynamic

- Sudden change of return T at each draw-off
- Very fast DHW response time (less than 1 minute with only a slight overshoot)
- DHW priority

TOPIC 6:

Faults in Substation

Implement at fine sampling a digital monitoring

FAULTS IN SUBSTATION

Focus is on the problem of high return temperature:

- Short circuit flows (intentional and non-intentional)
- Too low supply temperatures in peripheral substations
- Errors in substation
- Errors in customer heating system

Detection and priority set using overflow indicator

« District Heating And Cooling », S. Frederiksen and S. Werner, Studenttlitteratur, Sweden, 2013

Mansson et al., Faults in district heating customer installations and ways to approach them: Experiences from Swedish utilities, Energy, 2019

3 different fault groups:

- Unsuitable heat load patterns
- Low average return temperature
- Poor substation control
- \rightarrow Use of automatic data collection is necessary

Gadd and Werner, "Fault detection in district heating substations", Applied Energy, 2015

FAULTS IN SUBSTATION

Fouling detection using:

- full substation model and identification of the fouling parameter
- steady state detection and linear fit of Q as a function of UA: assumption of constant DTLM

Guelpa et al., Automatic fouling detection in district heating substations: Methodology and tests, Applied Energy, 2020

 L_{pl}/n_{seg}

1:Convection

2:Fouling 3:Conduction Ep_{ch}

Side View

Hot Fluid

THANKS FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives 17 rue des Martyrs 38054 Grenoble Cedex

Établissement public à caractère industriel et commercial RCS Paris B 775 685 019