Office of Technology Assessment at the German Parliament

`,

TF

Climate Protection via CO₂-Capture and -Storage

Dr. Reinhard Grünwald

Université de Genève Seminar 5. March 2009

What is TAB?

- Independent scientific institution, operated by Research Centre Karlsruhe
- > Work exclusively for Parliament and its Committees
- > Main Objective:

Enhancing the information/knowledge basis of parliamentary deliberations and decision making on scientific and technological topics

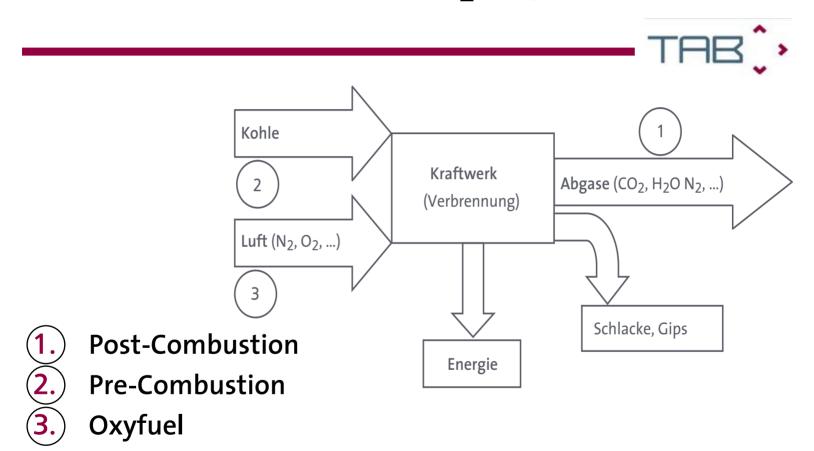
Starting Point

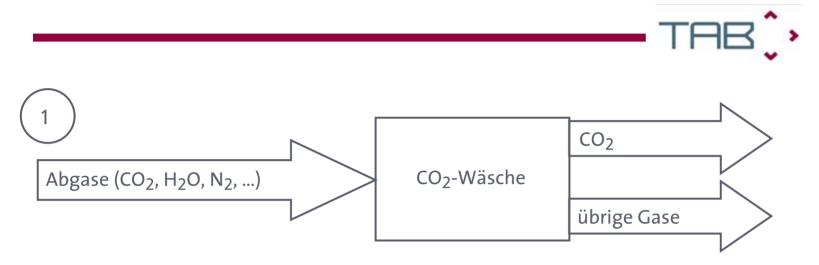
- Energy supply in Germany (and other countries) is not sustainable
- > Fossil energy sources (Oil, Gas, Coal) contribute > 80 %
 - Fossil resources are limited
 - Greenhouse gas CO₂ is produced
- > 2°C goal requires that greenhouse gas emissions are brought down by ~80% till the middle of this century

→ Key Question:

Can Carbon Capture and Storage contribute to a more sustainable energy supply?

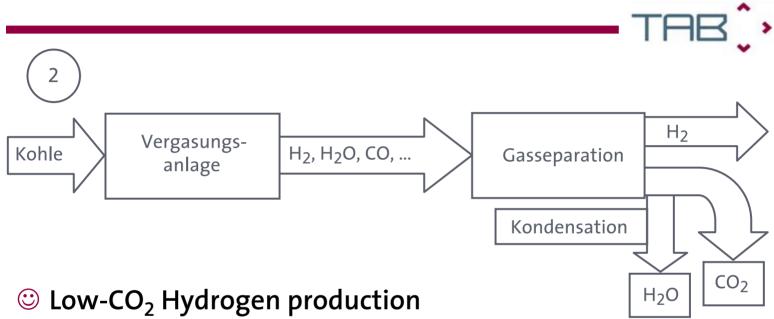
Overview


- > State of Development
 - CO₂-Capture
 - Conditioning and Transport
 - CO₂-Storage
- Storage Potential
- > Safety, Risks, Environmental Impacts
- > Costs
- > Integration into the Energy System
- > International Perspective
- > Public Opinion and Acceptance

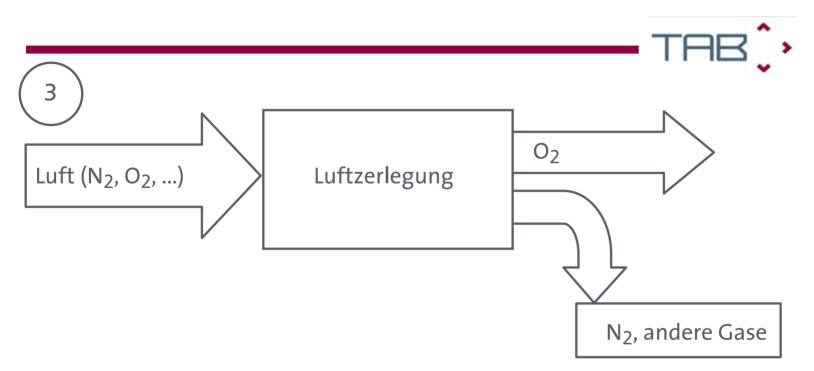

State of Development

- > CCS is suitable for big stationary CO₂-Sources
- > It is being particularly discussed for coal power stations "Clean Coal"
- > Technology Chain
 - CO₂-Capture
 - Conditioning and Transport
 - Storage (deposition)
- for operational availability the year 2020 is often quoted

Processes for CO₂-Capture



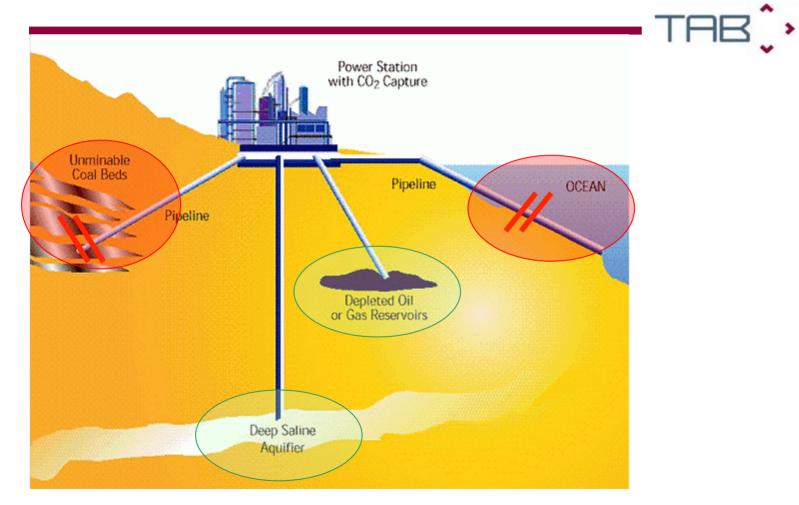
Post-Combustion


- © Commercially available process, retrofit possible
- Efficiency of electricity generation drops drastically eg. from 45% to 31-37%, fuel consumption rises by 10-40%
- Technological challenges: Up-scaling (50 times), development of better solvents, future: selective membranes

Pre-Combustion

- Highly complex processes (IGCC)
- Hydrogen turbines, process integration, membrane methods

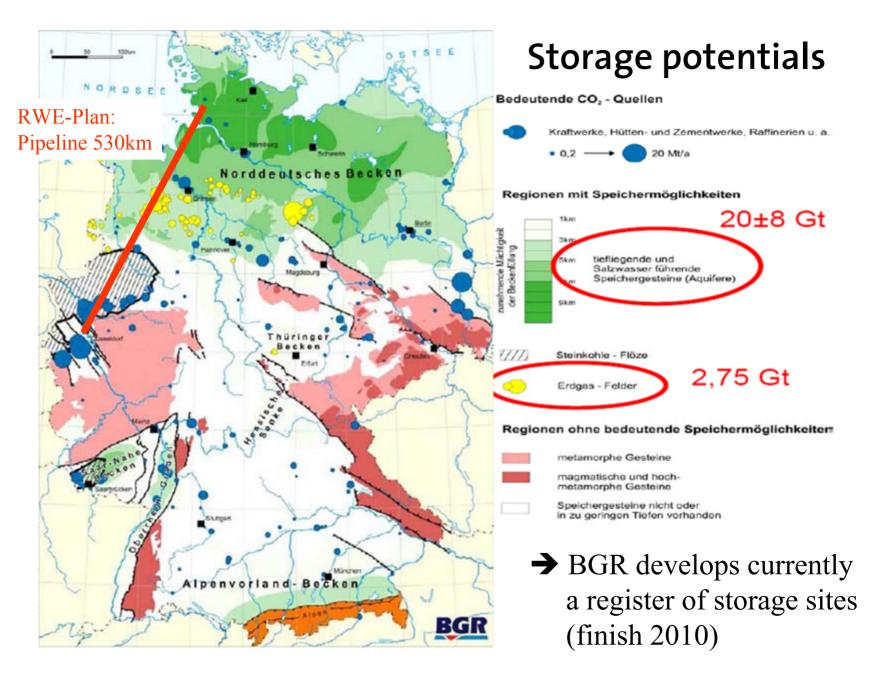
Oxyfuel


- ☺ Less effort and costs for CO₂-Capture
- Energy consumption for Oxygen production, impurities in the CO₂ could be a problem
- Membrane methods, process integration

CO₂ Conditioning and Transport

- Deal with big streams of CO₂ (eg coal power plant 1000MW_{el} → 5 Mio t/a)
- > Transport by: Pipeline, Ship
- CO₂ has to be liquefied (or "supercritical") (needs energy)
- > Open questions
 - Corrosion resistant materials
 - Role of impurities
 - Build-up of Infrastructure (regional planning)

CO₂-Storage



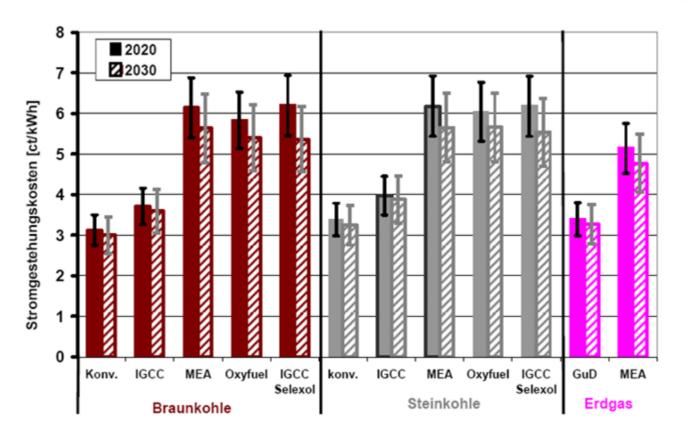
Quelle: IAE GHG

Storage Potential

- Estimations of worldwide storage potential show an enormous spread
 - 100 bis 200.000 Mrd. t CO₂
- In Germany they amount to about 40- to 130-times the annual CO₂-Emissions of all power plants
- > Geographical distribution: mainly in northern Germany
- > Not all possible storage formations will be usable
- > Restrictions:
 - geologic details, competing usages (eg geothermal energy), economic, legal and political framework

Safety, Risks, Environmental Impacts

- > Focus of risk discussion: Geologic Reservoirs
 - Storage permanence: at least 1.000 to 10.000 years
- Safety and permanence of CO₂ storage could be compromised by:
 - Dissolution of rock by CO₂/water-mixture (carbonic acid!)
 - Pressure induced enlargement of existing fractures and rifts
 - Leakage through existing old boreholes
- Generic conclusions with respect to the safety of specific storage formations have limited validity
- > Each reservoir has to be examined individually
- > Minimise risiks by
 - Suitable regulation
 - Continuous Monitoring


Costs

> Cost breakdown

- CO₂-capture is dominant cost factor: ca 26 37 /t
- Transport: ca 2 /t (typical case: 250km, 5 Mt/a, easy terrain) Can be 10 times higher eg in urban areas
- Storage: -10 /t (for EOR) to 10 /t (depends strongly on geological details)
- Other cost components: Monitoring, liability/insurance, restoration
- > Electricity generation costs increase to 5-7 ¢/kWh (in 2020)
 - Many renewable energy technologies could reach a comparable cost level
 - Cost projections depend on a number of assumptions
 - It is evident that CCS does not enjoy a unique selling position
- CCS only attractive if financial incentives for CO₂-mitigation is big enough (eg price for EU-Allowances)

Electricity generation cost with and without CCS

Source: Linßen et al. 2006

Integration into the Energy System

- > Availability of CCS-Technology is expected around 2020
- Considerable need for renewal of power plants in the next years
- > If the modernisation cycle is finished, structure of power generation is fixed for centuries to come
- > The "window of opportunity" is narrow and starts closing after 2020
- > If the "Capture Ready"-concept is credible is still an open question

International Perspective

- > CCS-Technology could be attractive for countries that
 - are sceptical about climate protection (USA, Australien)
 - want to use domestic coal resources (China, India)
- In China between 1995 bis 2002 about 100.000 MW fossil fuelled power stations (mostly coal) have been built.
- > For 2002 to 2010 additional 170.000 MW are expected
- > If this trend continues international efforts for climate protection would be seriously dwarfed

Public Opinion and Acceptance

- > Technologies like CCS ("big", "under ground", "waste") are prone to trigger public concern and opposition
- > Lack of public acceptance can be a potential "Show Stopper"
- Securing a high degree of acceptance must be a high ranking objective
- Nation-wide discourse and participation process should be initiated before concrete siting decisions have to be taken (NIMBY!)

Regulation

- > Regulation has to pursue three objectives
 - Assure that CCS is permissible
 - Provide incentives that investments in CCS are realised
 - Ensure that CCS does not fail because of lack of acceptance
- There is urgent need for action because planned
 Pilot- and Demonstration-Projects need legal basis
- > The awareness for urgency seems to have been established
 - EU CCS-Directive was adopted in record-breaking time
 - German CCS-law is up for decision in the next few weeks

The Way Forward (1)

- > 10-12 Demonstration plants in Europe
 - 300 Mio. allowances from EU Emission trading scheme (equivalent to 6-9 Mrd. Euro)
- > Exploration and field tests for storage in different geological formations
- > Broaden the science-base Close critical knowledge gaps
 - Interactions of CO₂ in the ground
 - Determination of suitability and capacity
 - Competing usage
 - Capacity Building and technology transfer to emerging countries (China, India)

The Way Forward (2)

- Integrate social and environmental accompanying research
- Align Technology development with criteria of sustainable development
- > Provide decision-relevant knowledge concerning economic, ecologic and social impacts
- > Initiate public debate and develop acceptance
 - Develop and implement a nation-wide communication, information and participation strategy

