Université de Genève, 2023.11.30

Why we need battery swapping for the future energy and transport systems

António Vallera

Universidade de Lisboa (IDL, Ciências)

References:

Contact: amvallera@fc.ul.pt

- The transition: Why we need battery swapping for the future energy and transport systems, A.M. Vallera, Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisboa, Portugal, 2023, ISBN 978-972-9348-24-2, https://doi.org/10.56526/10451/55274
- Why we need battery swapping technology, A.M. Vallera, P.M. Nunes, and M.C. Brito, Energy Policy 157, October 2021, 112481, https://doi.org/10.1016/j.enpol.2021.112481
- Raising the limits to PV integration with a battery swapping model for mobility, A.M. Vallera and M.C. Brito (to be published)

Outline:

A. A national system

- 1. The inspiration: carbon neutrality in Portugal 2050
- 2. The central problem of a system dominated by solar and wind generation
- 3. The impact of decarbonizing transport in a decarbonized electric system: the outcomes of different road transport models (ICE, Plug-in, H2 and BSwap)

B. A small region

- Served by the national transport grid, with PV the only local, viable, renewable resource
- How much PV may be installed?
- How is this affected by different road transport models?
- What impact will these have on costs and emissions?

Portugal: present decarbonization policy

🔘 Redução de emissões por setor até 2050

> Trajetórias de neutralidade traduzem-se na descarbonização profunda da produção de eletricidade, da mobilidade e transportes e dos edifícios nas próximas duas décadas (2020-2040)

> Os setores da indústria e da agricultura apresentam um potencial de descarbonização mais reduzido, contribuindo ainda assim com reduções significativas no período 2020-2050, com especial ênfase no período 2040-2050

> A gestão agroflorestal eficaz é fator determinante para o objetivo da neutralidade carbónica em 2050

L Gráfico da redução de emissões por setor até 2050

Our focus:

- Power system
- Road Transport

- In a country aiming at the simultaneous decarbonization of both systems
- Portugal 2050 as an example of a future electric system dominated by solar PV (45%) and wind (40%) generation

		2015 TWh	2050 TWh
	Total Consumption	50	90
Consumption	General	50	70
	Mobility	0	20
Generation	Coal	14	-
	Gas	10	-
	Hydro	10	10
	Wind	12	37
	Solar PV	1	42
	WtE/Biomass	4	7
	Geothermal	0	0
	Wave	0	0
	Tidal	0	0
	Other	0	0

The energy matrix

Main difference to RNC 2050: No gas (for simplicity purposes only; retaining gas for some years makes sense) _

Generation is dominated by sun and wind, which are plentiful and cheap:

3 to 7 cents/kWh

- The central issue of the power system isn't anymore the (economic, environmental) cost of generation,
- The central issue is now

system balance

(a consequence of the dominance of solar and wind, variable and non-dispatchable)

Let us quantify this problem:

Two weeks in January 2050: Demand and generation

Two weeks in January 2050: Demand and total generation

We define an *imbalance* function as **Imbalance = Demand – Generation** which must be brought to zero at all times:

Two weeks in January 2050: Demand and imbalance (raw and attenuated)

Two weeks in January 2050: Demand and imbalance (raw and attenuated)

Conclusion: After using all "classical" balancing means available, we still have a massive problem;

Since we do not solve the imbalance problem by trying to adapt generation to demand, why don't we look instead at demand flexibility, and try to adapt demand to generation?

Flexible demand possibilities:

- General demand management (*e.g.*, thermal systems): far too insufficient.
- Hydrogen: possible, but ... (How much H₂ would be produced? How much would it cost?)
- Road transport

The impact of decarbonization of road transport in the electric system:

1. Energy for road transport

	Energy spent on road transport TWh	Electric energy consumption TWh	(Energy consumed in road transport) (Electric energy consumption) %
World	32 230	24 881	130 %
Portugal	65	48	137 %
EU	3 556	2 647	134 %
USA	5 981	3 961	136 %
China	4 467	6 753	66 %

Need to increase generation by ~60% to satisfy this additional demand - if we adopt efficient battery electric vehicles

EU: The impact of decarbonization of Eurupean trucks on the electric system

Ref: Transport and Environment, 2018

Electricity needed to decarbonize trucks in EU 2050

The impact of decarbonization of road transport in the electric system:

2. Power

- Power of motors on wheels is ~100 times the average power of electric demand.
- With substitution of present vehicles by battery eletric vehicles, the power capacity of batteries would be about the same.
- If 10% of these batteries were grid connected, their nominal power capacity would still be ~10 times the average electric demand

Road transport models studied:

- 1. ICE– Vehicles run on diesel or petrol
- 2. Plug-in Vehicles are battery electric, and charge by connecting to a charger. Realistic charging flexibility and V2G are allowed.
 - Vehicles are powered by fuel cells than run on electrolytic hydrogen.

4. BSwap

3. H2

 Vehicles are battery electric, and refuel by swapping their low-charge batteries by charged ones, at Battery Swapping Stations. Demand is fully flexible within battery residence time in BSS (*e.g.*, 24h). Storage and battery-to-grid are allowed with 2nd-life batteries. Two weeks in January 2050: Demand and imbalance (raw and attenuated)

Two weeks in January 2050: Demand and imbalance (raw and attenuated)

Is this a miracle?!

No, simply the result of applying to road transport a **Battery Swap** model.

The Battery Swap model:

- Vehicles refuel by swapping their low-charge batteries for charged ones at Battery Swapping Stations (BSS).
- Discharged batteries are inserted into chargers, and reside in the BSS for *e.g.* 24h, and so are charged when most convenient (for grid balance and lowest price).
- A large fraction of demand (20-30%) becomes flexible, and its power capacity is sufficient to absorb all "excess" wind or solar peaks. Demand flexibility is the main cause of the improvement in grid balance.
- 2nd-life battery storage is a second order effect, but important for economic and for security of supply reasons.
- Together with longer term hydro pumped storage, the result is a balanced grid. No need for further large-scale storage.
- The beauty of it: this benefit to grid stability is paid for by transport.
- The result: electricity will be cheap.

Two weeks in January 2050: Imbalance with Plug-in, H2 and BSwap

Two weeks in May 2050: Imbalance with Plug-in, H2 and BSwap

Two weeks in August 2050: Imbalance with Plug-in, H2 and BSwap

Imbalance during the year of 2050: effect of the BSwap models (BSwap Flex and BSwap+)

Conclusion:

Intelligent satisfaction of road transport demand solves the imbalance problem.

What about costs?

Combined Transport & Power Sector costs

With the Battery Swapping model

- The electric system becomes essentially balanced
 - No need to curtail, or sell at very low prices, a large fraction of solar and wind generation; nor to buy massively at peak demand times
 - No need for further large-scale storage
 - The need for high capacity cross-border connections is limited
- The grid becomes resilient
- Electrification of heavy vehicles is easily achieved
- Acceleration of transport electrification occurs
- Costs are lowest
- Low cost electricity from a stable electric system encourages
 electrification of many other human activities

Conclusion:

The 2 great structural changes in the future energy system by 2050,

- The decarbonization of the electric system (with dominance of non-dispatchable renewables), and
- Electric mobility

Taken together, with the right model, are the most efficient, lowest cost, and potentially faster, solution for

- A road transport system with ease of use, lowcost, and totally descarbonized, and
- A stable, decarbonized, power system, supplying energy at lowest cost.

(say, 200 000 people)

Assume that PV is the only local energy resource.

Questions: How much PV may be economically installed? How does this depend on road transport model? What are the outcomes of each option?

B. A smaller region

(say, 200 000 people)

Road Transport models considered:

- 1. BAU (or ICE)
- 2. Plug-in
- 3. Plug-in Flex + Storage
- 4. BSwap Flex

- 5. BSwap Flex + Storage
- 6. BSwap Flex + double Storage

- Transport relies on fossil oil, mostly diesel and petrol.
- Vehicles are all battery electric, and charge by connecting a plug into the socket of a charger.
- ", with 10% demand flexibility and added 2nd-life battery storage.
- Vehicles refuel by swapping their low-charge batteries by charged ones, at Battery Swapping Stations.
- ", with added 2nd-life battery storage.
- ", with twice the previous storage capacity.

(A Hydrogen powered transport model was not considered in detail because its cost was estimated as far too high.)

PV Generation, Self-consumption, Export, Curtailment: an example

PV self-consumption for different road transport models

Costs of PV Generation and of Imported Energy: an example

Total costs (include: emissions, electric and road transport infrastructures, vehicles, ...)

Reduction of Electricity Cost and Emissions

At minimum cost points: Imported and PV generated Electric Energy

Imported electricity is 18.5% only of total consumption

The outcomes of the decision to adopt the BSwap model:

- PV integration reaches values previously thought impossible; emissions decrease dramatically
- Local grid capacity expands without having to wait for very large, far-away, investments in centralised plants, it is decided and managed locally
- Power quality becomes high, with a stable and resilient local grid. (The old power line of the national grid is no longer congested, delaying the need for a new line.)
- High quality and lower cost electric energy attract new businesses, and promote decarbonization of other actvities.
- Quality of life improves

Thank you

Université de Genève, 2023.11.30