

HEAT PUMP INTEGRATION IN DISTRICT HEATING SYSTEMS

Opportunities and Barriers

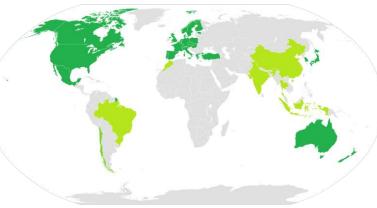
Roman Geyer

Seminar at the University of Geneva Thursday, 28th November 2019 | 17:15 – 18:30

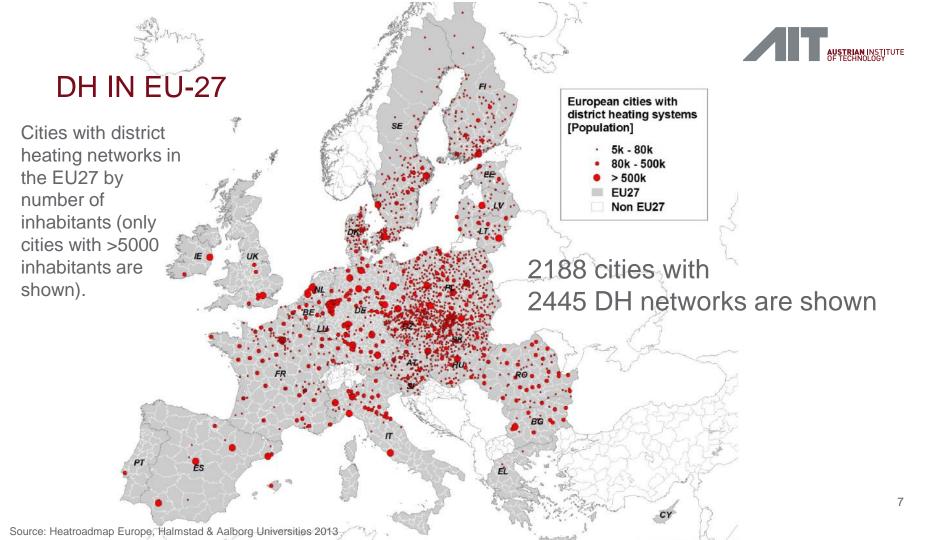
- General overview
- Basics of DH and HP
- Hydraulic integration options
- Barriers / challenges
- Possible solutions and opportunities
- Success factors
- Monitoring and Optimization
- Developments / Project Highlights
- Closing
- Discussion

SEMINARS ON ENERGY CHALLENGES

- Energy demand in Switzerland
- District heating (DH) potential
- Renewable heat integration in DH
- Low temperature DH in Geneva
- Heat pump integration in district heating systems: Opportunities and Barriers
- Role of combined heat and power in the energy transition



bmvit Austria's largest 1.370 **RTO** Centers employees System **Applied** Research Infrastructure Systems Competence Federation of **Austrian Industries** Subsidiary **Next Generation** Enterprises (through VFFI) Solutions LKR, NES, SL, Profactor 51% 162,9 **Tomorrow Today M** EUR total revenue


INTERNATIONAL ENERGY AGENCY (IEA)

- Founded in 1974 by 16 industrial nations to combat the oil crisis (IEA has strategic oil reserves)
- Goal: To guarantee reliable, cost-effective and clean energy
- Current: 30 Member States
- Important publications:
 - Key Energy Statistics
 - World Energy Outlook ("Bible of the Energy sector")
- **Cooperation platform** in the field of research, development, market launch and application of energy technologies

- Task 2. Description of existing DHC systems and demonstration and R&D projects with HPs
- Task 3. Review the different concepts/solutions
- Task 4. Implementation barriers, possibilities and solutions

INSTALLED HP CAPACITIES

Survey EHPA (European Heat Pump Association)

$1,422 \text{ MW}_{th}$

57 HP plants 112 HP \rightarrow Ø 12.7 MW_{th}/HP

Installed capacity [MW_{th}] 1022 1022

85

66 X

15

COP

AUSTRIAN INSTITUTE

Average: 3.74 RL increase: 5.4 – 6.5 LT-DH: 5.5 Absorption-HP: 1.4 – 1.7

Refrigerants

R134a most frequent (~ 70 %) NH₃ promising CO₂ Further development needed

https://www.euroheat.org/wp-content/uploads/2016/04/160420_1600_1730_2nd-place_Andrei-David_presentation.pdf

6

35

DH IN SWITZERLAND AT A GLANCE

17 TWh

potential for DH

2-3 TWh

potential for HPs in DHN

32%

based on waste incineration

(wood 30%, gas 23%)

9%

of residential heat demand covered by DH

7.7 TWh

Winterthur

DH generation in 2017 (CH: 85 TWh total head demand)

1,000 [-]

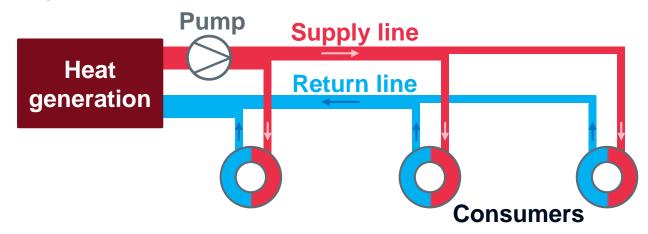
DH networks (of which 600 has biomass as main energy carrier)

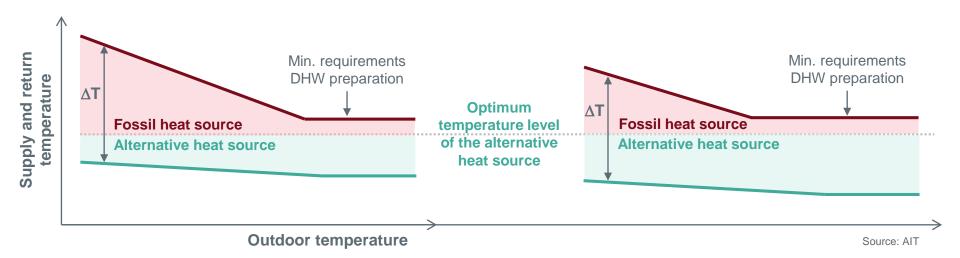
Sources:

https://heatpumpingtechnologies.org/annex47/wp-content/uploads/sites/54/2018/12/task1reportswitzerland.pdf | https://www.eicher-paul.ch/images/content/publikationen/Weissbuch_Fernwrme_Schweiz.pdf https://www.fernwaerme-schweiz.ch/fernwaerme-deutsch/Verband/VFS-Jahresstatistiken/Jahresstatistik Statistique annuelle2017.pdf

9

BASICS OF DISTRICT HEATING AND HEAT PUMPS


Functional principle district heating Why to lower temperatures? Influences of reduced temperatures Example: CHP (Back pressure) Motivation for HP integration


FUNCTIONAL PRINCIPLE DISTRICT HEATING

- (Central) Heat generators produce hot water
 - (Central) Pumps ensure heat distribution in the network
 - Heat is distributed by a supply line which supplies the consumers with hot water
- Cooled water is returned through the return line to the heat generator(s), where it is heated again

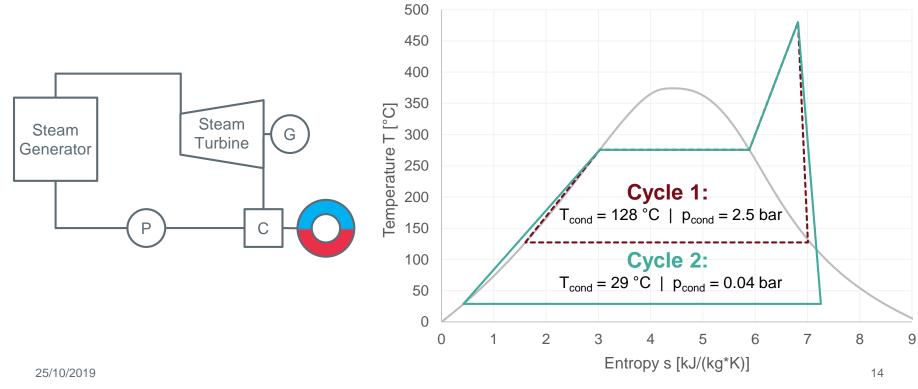
WHY TO LOWER TEMPERATURES?

INFLUENCES OF REDUCED TEMPERATURES

Generation

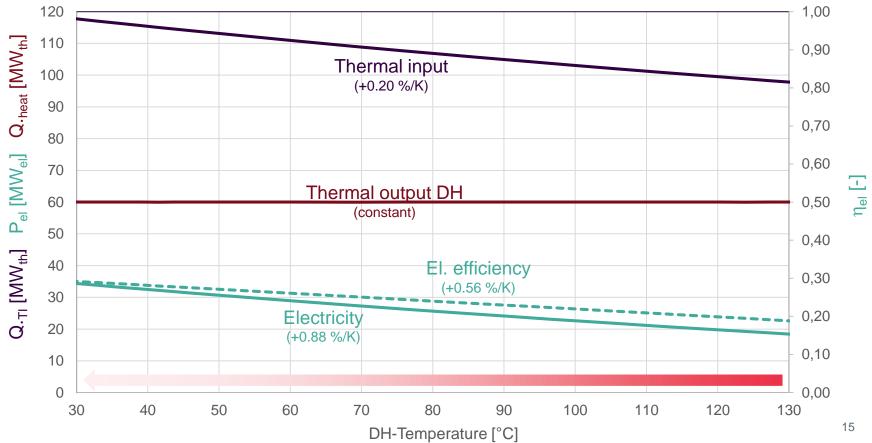
Higher fuel utilization, Higher electricity yield in CHPs, Better economic efficiency, Reduction of emissions (CO₂, ...), Better integration of alternative energy producers (heat pumps, waste heat, ...), etc.

Grid


Higher transmission capacities, reduction of heat losses, reduction of mass flow and thus of pumping costs, smaller pipe dimensions for new buildings, etc.

Customers

Ecological and economical operation, optimal design and construction of the plants, economical DHW preparation (hygienically perfect and with low return temperatures), etc.


EXAMPLE: CHP (BACK PRESSURE)

Source: AIT

Source: AIT

MOTIVATION FOR HP INTEGRATION

The motivation to use HPs in DHC can be divided into the following areas:

- **usage** / **capture** of low temperature alternative heat sources
- enabler for other alternative energy sources
- link to **power** grid (balance of energy domains)
- **reduction** of the network temperatures
- increasing transport capacities by using the return line as a source

HYDRAULIC INTEGRATION OPTIONS FOR HEAT PUMPS IN DH NETWORKS

External

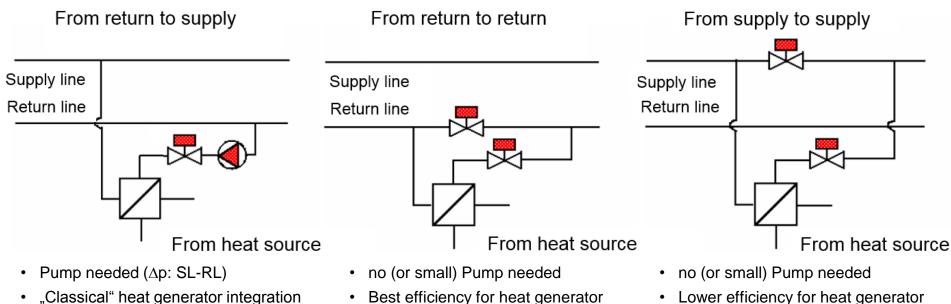
Internal

Supply line

Return line

Transport capacity

Sub networks

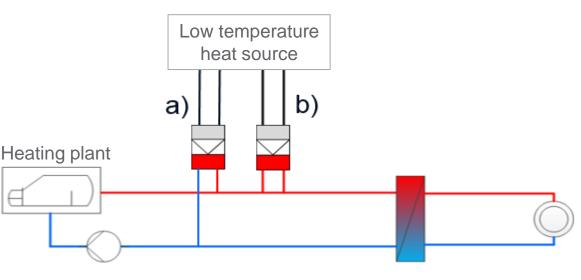

"EXTERNAL" HEAT SOURCES

- Environmental heat
 - Sea, Lake, Groundwater
- Industrial processes
 - Steel & iron and foundries
 - Pulp & paper
 - Food producers
 - Data centers
 - Drying processes (e.g. laundries), etc.
- Existing infrastructure
 - Other alternative energy producers (e.g. flue gas)
 - Sewers
 - Tunnel systems

HYDRAULIC INTEGRATION OPTIONS FOR HEAT GENERATORS IN DH NETWORKS

General hydraulic feed-in options

- "Classical" heat generator integration
- No influence on return temperature

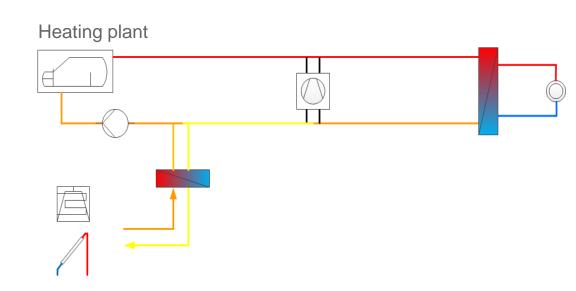

Return temperature increases

- Lower efficiency for heat generator
- Max. temperature after feed-in •

INTEGRATION OF HP WITH **EXTERNAL** HEAT SOURCE IN THE DH **SUPPLY** LINE

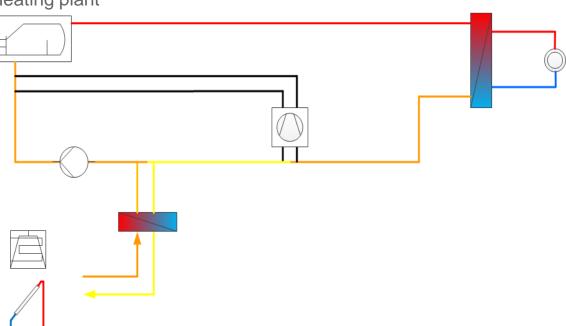
- Parallel (a) or serial (b) integration
- Integration into supply line: high temperature requirements for the heat pump
- Requirements for special Refrigerants
- Pro: Temperature boost happens close to the consumer

INTEGRATION OF HP WITH EXTERNAL HEAT

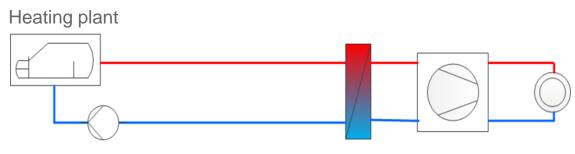

Low temperature

heat source

Integration into return line: ٠ lower temperature of the return line \rightarrow higher efficiency of the Heating plant heat pump BUT: higher return ٠ temperatures on existing heat generators


INTEGRATION OF HP WITH **INTERNAL** HEAT

- Note: No additional renewable energy source is brought to the DH-network by the HP (except using renewable electricity)
- Add on: return temperature reduced → additional possibility for (alternative) energy sources e.g. flue gas condensation or solar thermal


INTEGRATION OF HP WITH INTERNAL HEAT

- Note: No additional renewable energy source is brought to the DH-network by the HP (except using renewable electricity)
- Just return line integration leads to higher efficiency of the heat pump
- Easier integration of low-grade waste heat

INTEGRATION OF HP WITH INTERNAL HEAT

- Booster: Increasing transport capacity / temperature in secondary networks
- Add on: supplying remote areas and prevent bottlenecks

INTEGRATION OF HP WITH **INTERNAL** HEAT SOURCE TO SUPPLY **SUB NETWORKS**

• Supplying sub networks

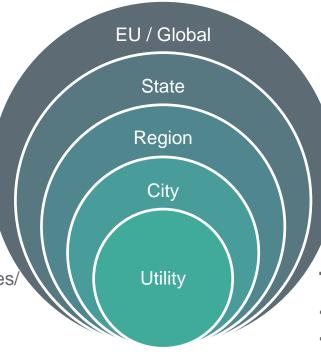
٠

Add on: e.g. coupling 3GDH with 4GDH (low temperature networks)

BARRIERS / CHALLENGES

Social-, economical- and technical barriers

CHALLENGES WE HAVE TO FACE

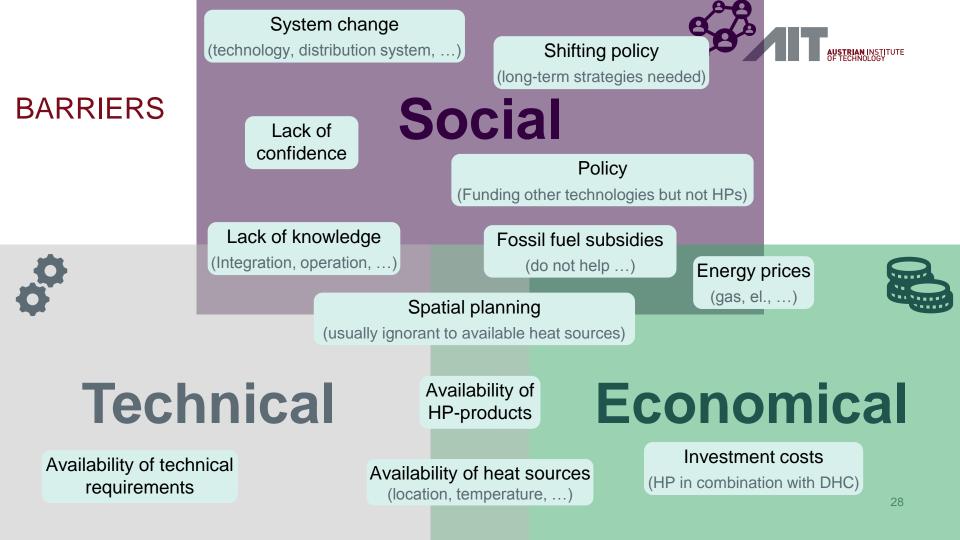

Customers

- Prosumer
- Citizens' power stations
- Service orientation and comfort (cooling requirements)
- New business and tariff models
- Supply security
- ...

Market

. . .

- High volatility, pooling of flexibilities/ balancing energy markets
- Copper plate or electric fences? (e.g. electricity price zone DE/AT)
- Energy price developments (oil, gas, ...)

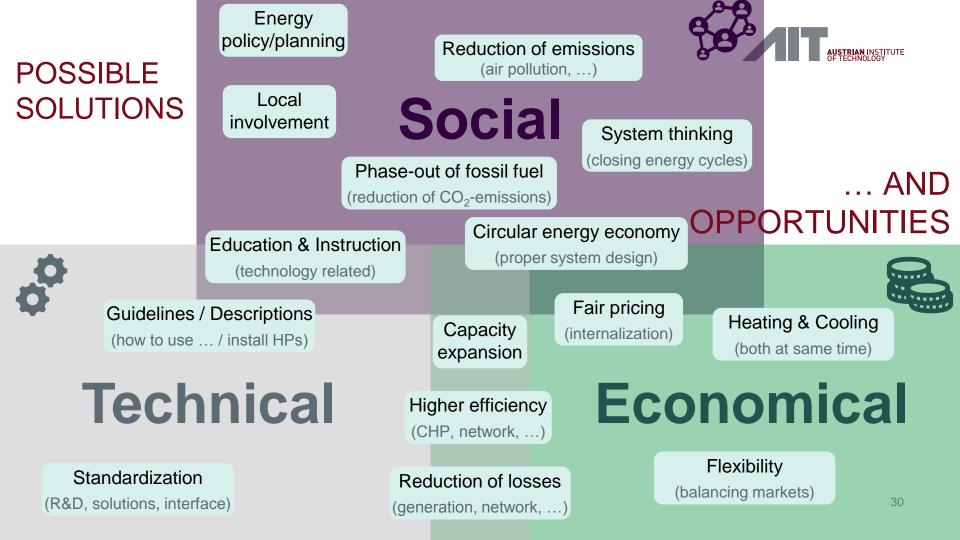

Society & Politics

- Demographic developments
- Decarbonization / COP21
- Energy efficiency act

Technology & Innovation

- Digitization & Smart Home
- Energy efficiency & storage
- Electric mobility

•



POSSIBLE SOLUTIONS AND OPPORTUNITIES

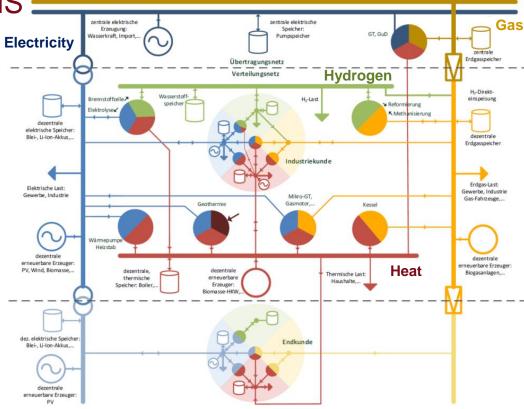
Holistic heat supply strategies Sector coupling/ hybrid energy systems Business models

HOLISTIC HEAT SUPPLY STRATEGIES

Assessment of boundary conditions Development of technology scenarios

Decision on the final concept

- a) Decision on the evaluation criteria and the time horizon
- b) Status-Quo evaluation and scenarios (heat demand...)
- c) Analyses of regulations, subsidies, political targets, energy market (especially electricity price forecast)
- a) Characteristics of relevant technologies/potential of alternative heat sources
- b) Assessment of levelized heat generation costs,
- c) Development of heat supply portfolio
- d) Sensitivity analyses

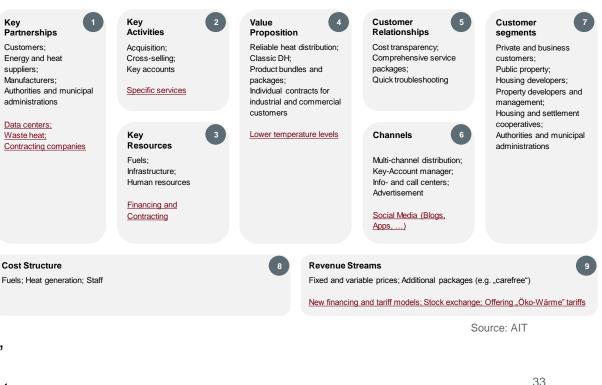

- a) Selection of different variants (supply/network)
- b) SWOT-Analysis
- c) Multi-Criteria evaluation
- d) Transition strategy & action plan for the selected variant

SECTOR COUPLING / HYBRID ENERGY SYSTEMS

The use of HPs in times of favorable electricity prices can increase the:

- **share** of renewable energy sources • and the security of supply in the heating grid and
- technical capacity and own ٠ **consumption** in areas with a high degree of local electricity production from PV and wind energy
- **services** for power grid / energy ٠ markets
- **BUT:** high complexity and very dynamic behavior

Source: W. H. M. Gawlik, M. Heimberger, R.-R. Schmidt, D. Basciotti, W. Böhme, G. Bachmann, ³² R. Puntigam, K. Haider und E. Arenholz, "OPEN HEAT GRID - Offene Wärmenetze in urbanen Hybridsystemen," Bundesministerium für Verkehr, Innovation und Technologie, Wien, 2016.


BUSINESS MODELS

Innovative approaches are needed

- Digitization
- Regionality
- Fuel substitution
- Specific services
- System optimization
- Flexible tariff models
- Holistic system concept
- Financing and contracting
- Waste heat / cooling energy
- Set up "heat stock exchange"
- Reduction of system temperatures

Existing business and financing models are often unsuitable for the integration of (decentralized) heat pumps in DH networks!

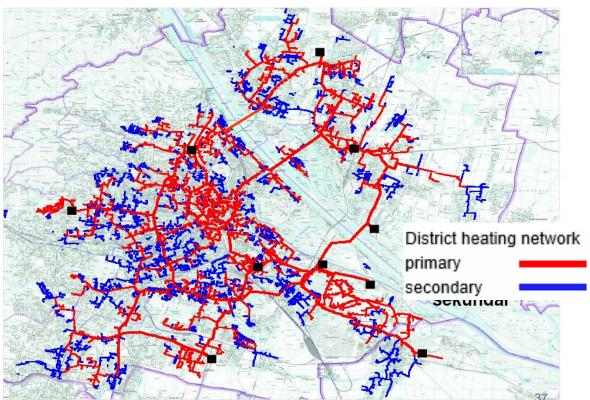
SUCCESS FACTORS

WHAT DO WE NEED?

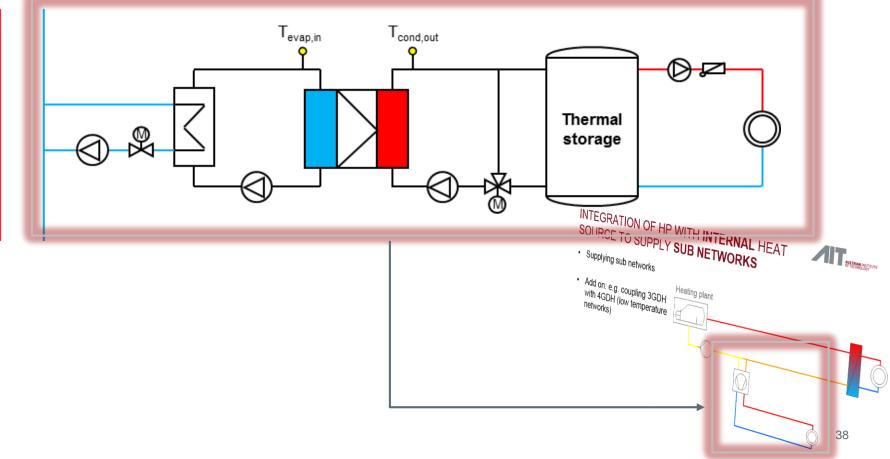
- Strong partners: companies, institutes, start-ups, etc. ٠
- Projects: demo, best practice, experiences, motivation ٠
- Learning by doing: requires pioneers who are willing to "pay its dues" ٠
- Energy spatial planning: localizing waste heat, avoiding double infrastructure ٠
- Standardized solutions: R&D, degression of costs, economy of scale ٠
- Price signals: to the use of fossil fuels, reduce the burden from tax and levy on clean ٠ energy

MONITORING AND OPTIMIZATION

District Boost:

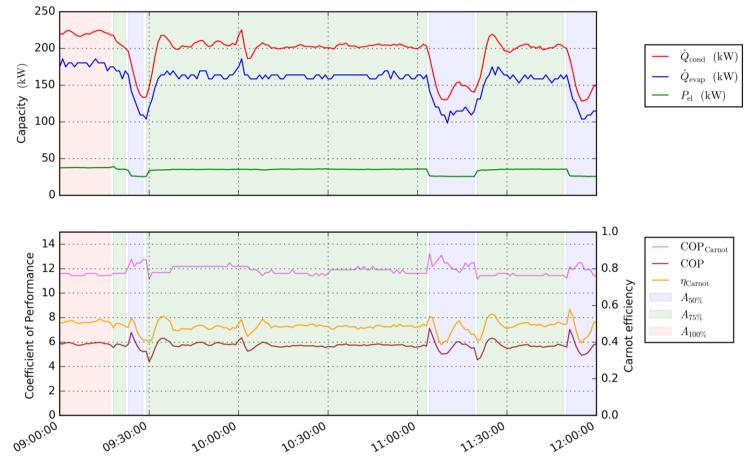

Application of heat pumps in the district heating network of Vienna

PILOT PLANT – DISTRICT HEATING NETWORK VIENNA

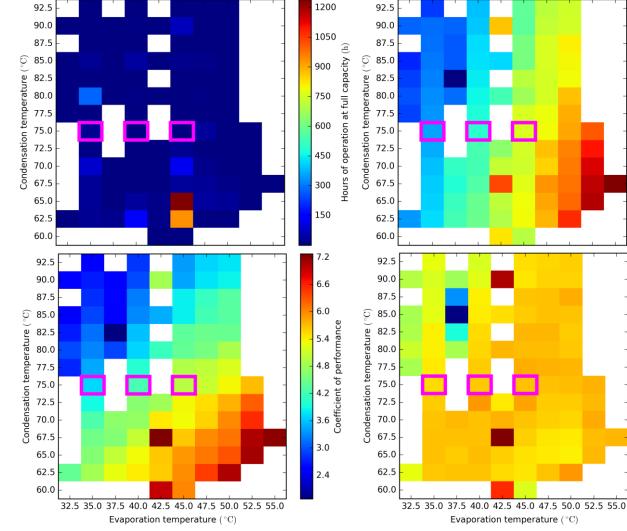

- Heat generation: ~ 6 TWh/a
- Primary net ≈ 560 km
- Secondary net ≈ 630 km
- T_{supply} prim. 80 150 °C
- T_{supply} sec. 63 90 °C

Source: B. Windholz et al., Application of heat pumps in the district heating network of Vienna, Smart Energy Systems and 4th Generation District Heating, 2017

PILOT PLANT – SIMPLIFIED SCHEME



Source: B. Windholz et al., Application of heat pumps in the district heating network of Vienna, Smart Energy Systems and 4th Generation District Heating, 2017


PILOT PLANT – ANALYSIS

Source: B. Windholz et al., Application of heat pumps in the district heating network of Vienna, Smart Energy Systems and 4th Generation District Heating, 2017

\triangleleft DAT, PERFORMANCE AN ם PILOT

300 270 240 210 by 180 by

at

150 Heat

120

90

0.7

0.6

0.5

Carnot efficiency

0.2

0.1

0.0

Source: B. Windholz et al., Application of heat pumps in the district heating network of Vienna, Smart Energy Systems and 4th Generation District Heating, 2017

PILOT PLANT – SUMMARY & LESSONS LEARNED

Dimensioning

Capacity and efficiency vary within operating range

- → choose most important operating points well
- → consider most unfavorable operating points

Hydraulics and general concept is good

Thermal storage allows for

- long operating times at full load and thereby high efficiency
- potentially cheaper HP due to lower peak capacity

Further optimization possible

To control faster and more accurate

ightarrow adapt control parameters of mixing valve

To avoid starts (transient operation) and partial load

 \rightarrow adapt storage management and hysteresis of capacity slide

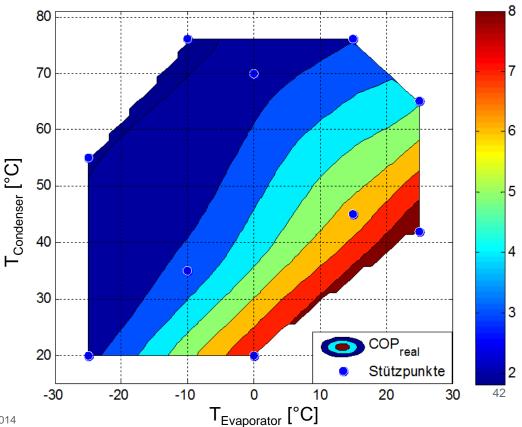
Source: B. Windholz et al., Application of heat pumps in the district heating network of Vienna, Smart Energy Systems and 4th Generation District Heating, 2017

Monitoring and optimizing is always good → especially in the first months after commissioning

Measured heat output was around 23 % below the manufacturer specifications!

 \rightarrow Leakage identified

 \rightarrow Amount of refrigerant was to little



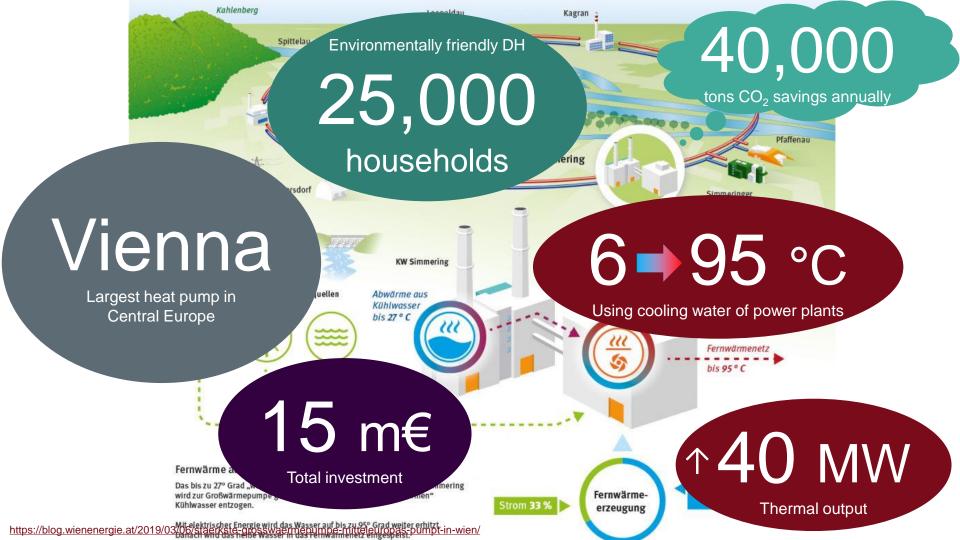
CONSIDERATION OF EFFICIENCY WHEN SELECTING THE HEAT SOURCE

- Ratio electricity / heat price:
 - 20ct / 8ct = 2.5
 - SPF >> 2.5

Recommendations

- low network temperatures and/or high heat source temperatures
- SPF > 3.5 ... 4.0

DEVELOPMENTS / PROJECT HIGHLIGHTS

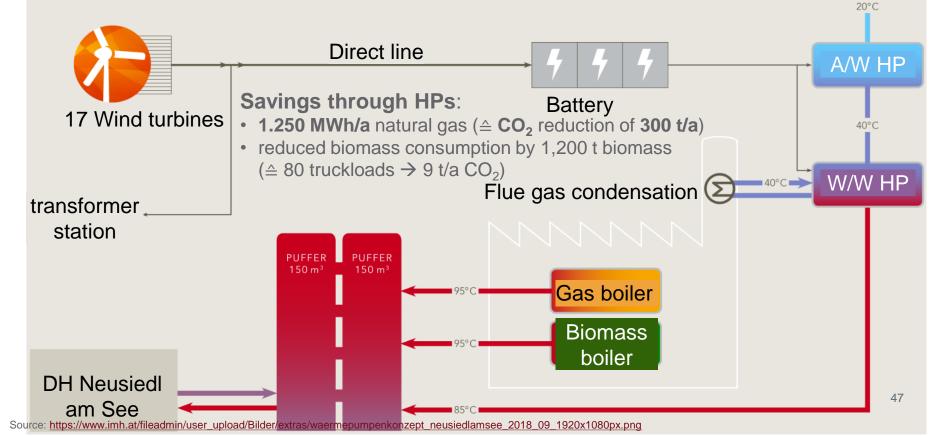

EUROPEAN GOOD PRACTICE EXAMPLES

Selected examples

- Mäntsälä (FI): HP for district heating; Source: Waste heat data center; 4 HPs; COP: 3.4; Q._H: 3.6 MW
 - Mänttä-Vilppula (FI): "steam-temperature" HP of up to 120 °C; Source: Return line DH; 1 HP; COP: 2.0; Q._H: 158 kW
- Stockholm (SE): HP for district heating;
 Source: Sea water; 6 HPs; Q._H: 180 MW
 - Drammen (NO): world's largest low GWP (NH₃ (R717)) refrigerant heat pump in DH; Source: Fjord water; 3 HPs; COP: 3; Q._H: 13.2 MW
 - Oslo, Sandvika (NO): HP for district heating and cooling; Source: Sewage (direct extraction); 3 HPs; Q._H: 21 MW; Q._C: 14 MW
 - Oslo, Fornebu/Rolfsbukta (NO): first HP-plant using HFO-1234ze (tetrafluoropropene); Source: Fjord water; 2 HPs; COP: 4.4; Q._H: 16 MW; Q._C: 20 MW
 - Lausanne (CH): heat pump built in 1985;
 Source: Lake Leman; 2 HPs; COP: 4.8; Q._H: 4.5 MW

https://www.ehpa.org/fileadmin/red/03._Media/03.02_Studies_and_reports/Large_heat_pumps_in_Europe_MDN_II_final4_small.pdf

POWER2HEAT – SECTOR COUPLING PROJECT IN NEUSIEDL AM SEE (AT)



46

- Burgenland is the region with the highest wind energy supply in Austria
 (The Parndorfer Platte is one of the windiest inland regions in Europe)
- Neusiedl am See is a preferred living space with increasing heat demand
- Installation of a high-performance HP with a direct line to the transformer station
 - winter: flue gas condensation from the biomass boiler to supply water with 40 °C in a cold storage tank. The cold storage tank is the energy source for the water/water (W/W) heat pump → raising the temperature level to 85 °C.
 - **summer:** biomass boiler is shut down. The cold storage tank is filled with air/water (A/W) heat pump. W/W heat pumps are operated as in winter.
- Due to a storage of 300 m³ the DH can supply for 10 hours
- In case if a wind slack, a battery storage will enable the heat pumps to be operated for a short time and then shut down in a controlled manner
- HPs: Saving of 1.250 MWh/a natural gas and thus a CO₂ reduction of 300 t/a and reduced biomass consumption by 1,200 t biomass (≙ 80 truckloads → 9 t/a CO₂)

Source: https://www.imh.at/extras/epcon-award/epcon-award-2019-voting/waermepumpenkonzept-neusiedl-am-see-energie-burgenland-fernwaerme/

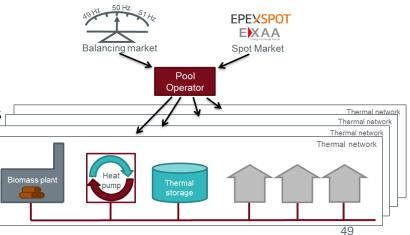
POWER2HEAT – SECTOR COUPLING PROJECT IN NEUSIEDL AM SEE (AT)

energie BURGENLAND

fit4power2heat

- Austrian biomass district heating network settings:
 - 2,377 biomass heat plants (2,153 MW_{th} and 6.1 TWh/a)
 - 128 biomass CHP plants (311 MW_{el}; 2.3 TWh_{el}/a; 3.4 TWh_{th}/a)
 - old heat plants operating with low efficiency
 - highly replicable business case
- Power to heat solutions:
 - heat pumps support both electricity and DH networks

Sources:


O. Terreros, Investigating heat pump pooling concepts in rural district heating networks in Austria, 2018 (<u>https://www.4dh.eu/images/Olatz_Terreros/2018.pdf</u>) https://www.biomasseverband-ooe.at/uploads/media/Downloads/Publikationen/Bioenergie_Atlas/Bioenergie-Atlas_Oesterreich_2019_klein.pdf

fit4power2heat

Project concept

- Integration of heat pumps in rural district heating networks
- Development of feasible use cases and potential business models
- Synergies between heat and electricity market
- Participation in the electricity markets:
 - Day-ahead SPOT market
 - Balancing markets (secondary and tertiary)
- Heat pump pooling over several heating networks

Source: O. Terreros, Investigating heat pump pooling concepts in rural district heating networks in Austria, 2018 (https://www.4dh.eu/images/Olatz_Terreros_2018.pdf)

fit4power2heat

Outcomes

The integration of heat pumps in rural district heating networks is technically and economically feasible.

Reduction of heat generation costs

- Some scenarios show up heat generation cost reduction up to 15 % (12,600 €/year).
- Most attractive case: combination of **day-ahead spot** and **secondary market**
- **Capacity increase** in the district heating network
- **Prolongation of the lifetime** of the existing old boilers

District cooling in international comparison

Installed district cooling capacity

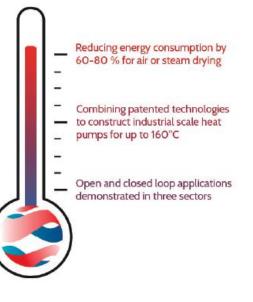
FUTURE MARKET: DISTRICT COOLING

- Europe < 50% of all office space air-conditioned ٠ (USA, Japan ~ 80%)
- FR: largest district cooling market in Europe •
- Possibility to increase efficiency ٠ (Trigeneration | CCHP)

Europe (survey)

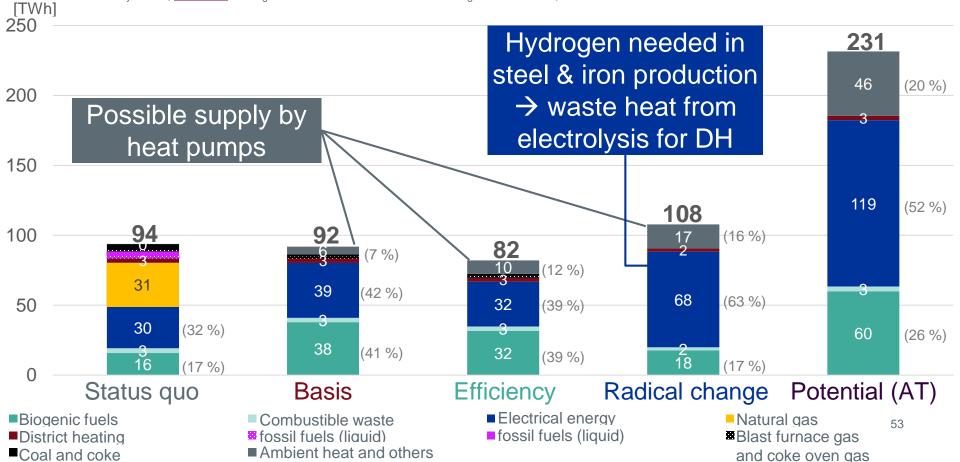
- 22 HP systems for heating and cooling purposes ٠
- Showcase plants: ٠
 - Helsinki (Kari Vala), Oslo (Sandvika), Stockholm (Nimrod)

800 719 700 600 500 400 300 200 134 100 0 FR PL ΗU DE NO AT FI IT


MW

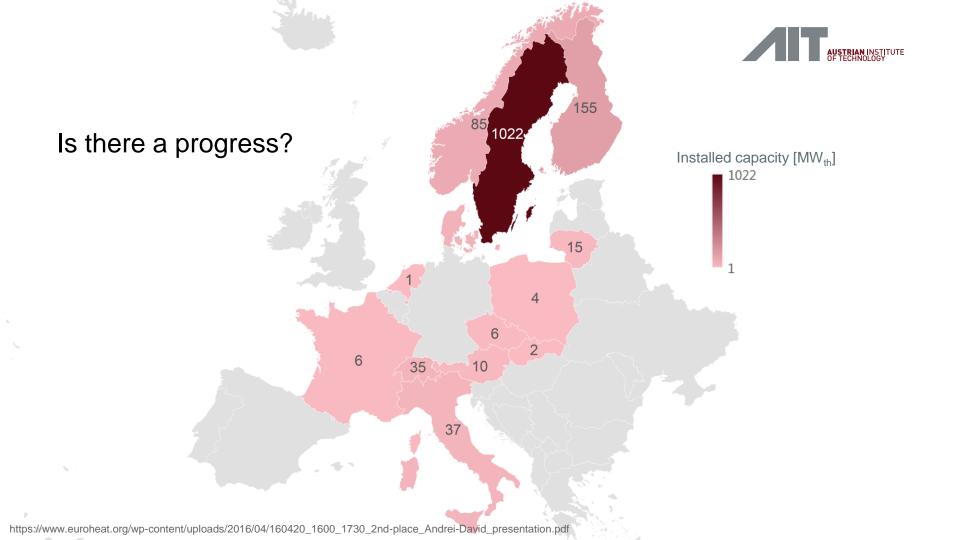
HIGH TEMPERATURE HEAT PUMP (HT-HP)

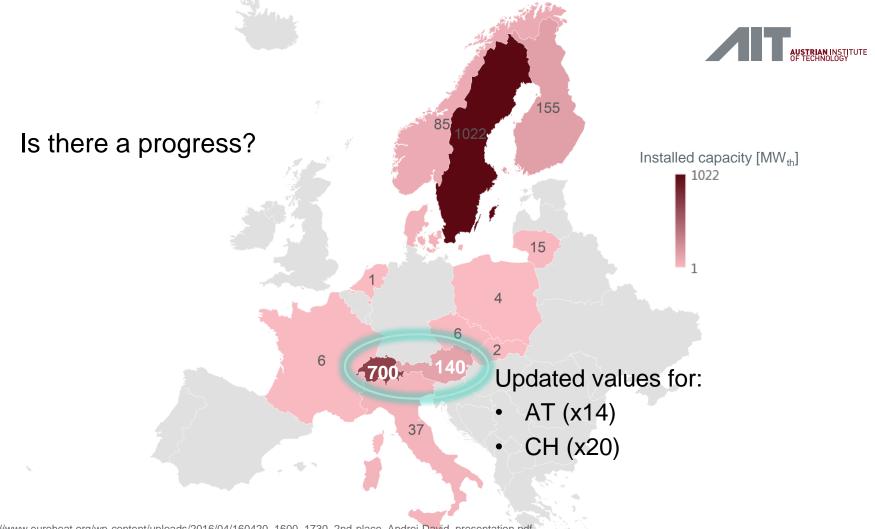
- Project DryFiciency (12 partners)
- Horizon2020 Innovation project for Waste Heat Utilization in Industrial Drying Processes
- Drying: 12 25% of industrial energy consumption
 - Goal: up to 80% energy saving
- Demonstration of two HT-HP (400 kW) up to 160 °C
 - Agrana
 - Wienerberger


http://dry-f.eu/

https://www.ehpa.org/fileadmin/red/03. Media/03.02 Studies and reports/Large heat pumps in Europe MDN II final4 small.pdf

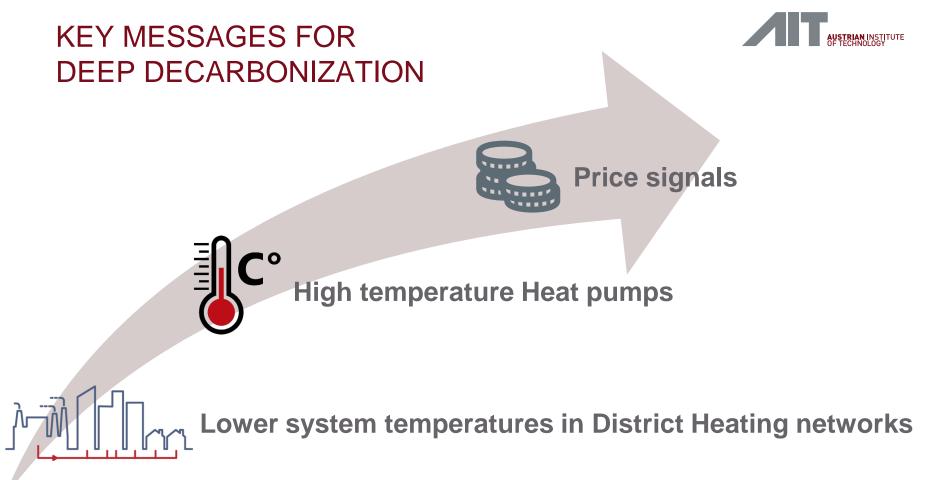
SUPPLY OF INDUSTRY BY RENEWABLES


Source: R. Geyer et al., IndustRiES – Energieinfrastruktur für 100% Erneuerbare Energie in der Industrie, 2019



CLOSING Progress Conclusions Key messages Announcement

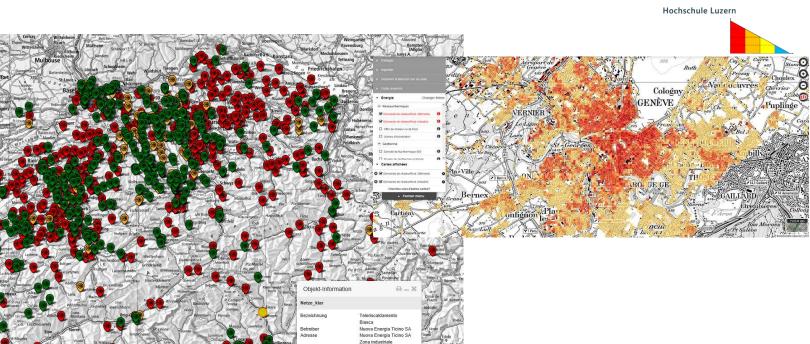
https://www.euroheat.org/wp-content/uploads/2016/04/160420_1600_1730_2nd-place_Andrei-David_presentation.pdf



CONCLUSIONS

- Heat pumps can make a significant contribution to the decarbonization of the heat supply (simultaneous decarbonization of the electricity supply)
- HPs are "enablers" for other alternative energy sources (geothermal, solar thermal, waste heat, etc.)
- HP potential depends on economic and political framework (but also on DH grid type, generation mix and other local conditions)
- New business models and application possibilities are required / support HP integration (e.g. sector coupling, energy markets, pooling, heating & cooling, flexible tariffs, etc.)

Looking ahead:


 Positive signs for heat pumps in DHC networks (remarkable developments in recent years; e.g. Austria, Switzerland)

ANNOUNCEMENT

6995 Madonna del Piano

2017

Holzschnitzel

Rückmeldung sende

betriebnahme

Leistung (MW) Energie (MWh/a) Hausanschlüsse Netzlänge (km) Hauptenergieträger

Bei fehlerhaften

2717/891 701 1133/819 101 0.0

angaben:

Source: https://s.geo.admin.ch/82d8014435 as of December, 18th 2019

THANK YOU!

Roman Geyer

November 28th, 2019

Research Engineer Integrated Energy Systems Center for Energy

DE GENÈVE

http://heatpumpingtechnologies.org/annex47/ https://map.geo.admin.ch/

https://www.unige.ch/sysener/fr/colconf/seminaires/

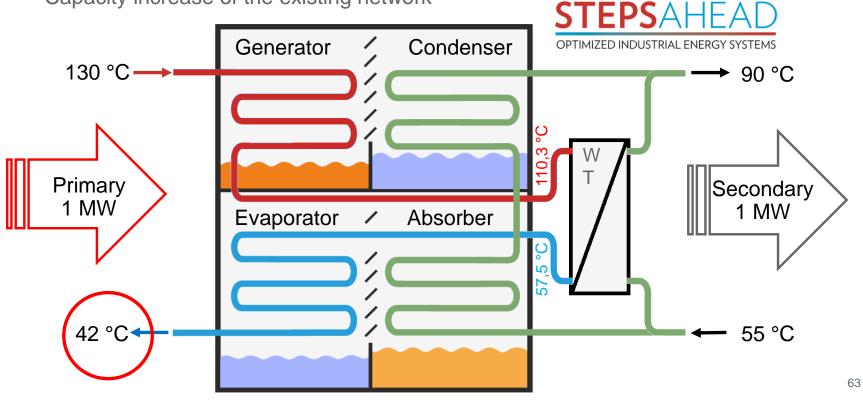
IndustRiES (Study how to supply the Austrian Industry by RES)

IEA HPT Annex 48 – Task 1 Report: Case Studies of Industrial Heat Pumps in Switzerland

AIT Austrian Institute of Technology GmbH Giefinggasse 2 | 1210 Vienna | Austria T +43 50550-6350 roman.geyer@ait.ac.at | www.ait.ac.at

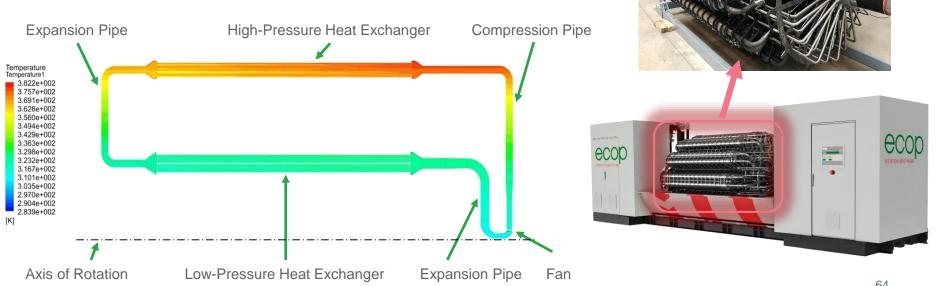
Acknowledgement to the University of Geneva for the possibility of this seminar

DISCUSSION



ABSORPTION HEAT EXCHANGER

- Reduction of the return temperature
- Capacity increase of the existing network



Source: Innovative Absorptionsmaschinen in Fernwärme- und Fernkältenetzen, 5FWKForum, H. Blazek, StepsAhead Energiesysteme GmbH, https://stepsahead.at/

ECOP – ROTATION HEAT PUMP

- Joule-Process ٠
- High-Temperature 100-150 °C ٠
- High COPs fluctuating input and output temperatures ٠

Source: http://www.hp-forum.eu/wp-content/uploads/2019/05/Christoph-Segalla-Big-dreams-with-big-heat-pumps-.pdf

STRATEGIC DEVELOPMENT OF HEAT PRODUCTION

- Utilization of latent heat within flue gas (waste incineration power plant) through ٠ a high temperature heat pump (estimated capacity: 16 MW_{th})
- GeoTief Wien
 - Research project analysing the geothermal potential in eastern Vienna
 - 3D-seismic measurements in 2018 (October to end of November) in an area of about 180 km²
 - Analysing the data until 2020

