

Un mix électrique 100 % renouvelable en France? Modélisation et analyses

*Université de Genève, Cycle de formation énergie-environnement*Christopher Andrey

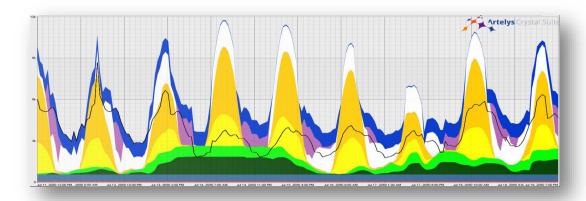
PLAN DE LA PRÉSENTATION

- 1. Contexte et question de recherche
- 2. Méthodologie
- 3. Principaux enseignements
- 4. Conclusion

Un mix électrique 100% renouvelable en France?

Etude disponible en ligne http://mixenr.ademe.fr

- La France peut-elle s'approvisionner à 100% en électricité renouvelable?
- Quelles solutions de flexibilité doivent être déployées?
- Quel portefeuille de technologies renouvelables?
- Quelle distribution géographique?
- Quels impacts en termes de prix de l'électricité? Quelle sensibilité aux hypothèses?


Ce qu'est cette étude, et ce qu'elle n'est pas

C'est une illustration d'un mix de production optimal à l'horizon 2050 avec une pénétration importante d'énergies renouvelables

> Il ne s'agit pas d'un scénario ou d'une recommandation politique

C'est une étude de faisabilité techno-économique qui vise à saisir les interactions entre la génération d'électricité renouvelable, la flexibilité de la demande et les technologies de stockage

> La dynamique infra-horaire n'est pas examinée

Une étude qui a permis d'initier un dialogue

EDF scientific chief: A 100% renewable energy system is impossible

L'USINE DE L'ENERGIE

ACCUFII	TRANSITION ÉNERGÉTIQUE	ENERGIES FOSSILES	NUCI ÉAIRE
ACCUEIL	TRANSITION ENERGETIQUE	ENERGIES FOSSILES	NUCLEAIRE

Les trois points clés d'une France à l'électricité 100% renouvelable selon l'Ademe

L'ÉLECTRICITÉ 100% RENOUVELABLE EN 2050, C'EST POSSIBLE ET PAS SI CHER SELON L'ADEME

LA QUESTION DE RECHERCHE

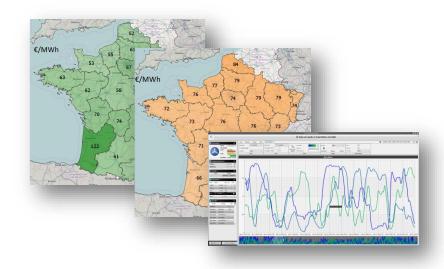
Au niveau régional et avec un pas de temps horaire

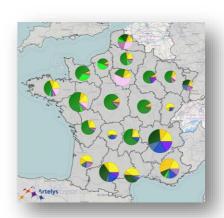
A quelle question cherche-t-on à répondre?

Pour les hypothèses de:

Niveau de demande électrique française en 2050

Niveau d'interconnexion avec les pays voisins


Gisements, profils et coûts des EnR et des solutions de flexibilité


Pour un taux EnR donné, quels sont les:

Investissements (capacités installées EnR, stockage, réseau) nécessaires?

Gestion optimale du mix (notamment des stockages)?

Prix de l'électricité?

PLAN DE LA PRÉSENTATION

- 1. Contexte et question de recherche
- 2. Méthodologie
- 3. Principaux enseignements
- 4. Conclusion

1 Demande

Caractéristiques	2013	ADEME 2050
Demande	466 TWh	422 TWh
Demande de pointe	100 GW	96 GW
Gradient thermique	2300 MW/°C	1500 MW/°C

Flexibilité de la demande

Chauffage (y.c. eau chaude domestique)

« White devices »

Véhicules électriques (50% de la flotte de véhicules)

3 Potentiels

Jusqu'à 1250 TWh

•	Eolien onshore	172 GW
•	Eolien offshore	66 GW
•	PV	411 GW
•	Hydro	30 GW
•	Biomasse	3,5 GW
•	Géothermie	0,14 GW
•	Energies marines	30 GW

Stockage

Stockage « infra-journalier »

Batteries ou air comprimé

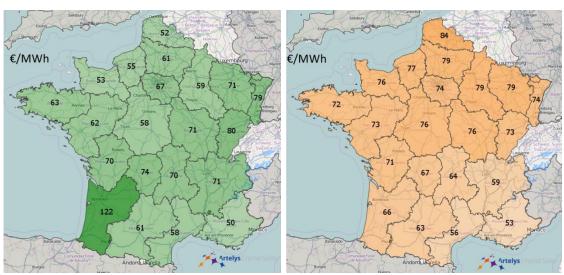
Peu onéreux en puissance (mais faibles volumes)

Stockage « infra-hebdomadaire »

Pompage-turbinage

En quantité limitée (contraintes géologiques et environnementales)

Stockage « inter-saisonnier »


« Power to gas to power »

Coût élevé et faible rendement (électrolyse, méthanation, stockage, CCGT)

Permet de stocker une grande quantité d'énergie sur de longues périodes

Coûts

Il existe une importante disparité régionale des potentiels et coûts des technologies EnR. Le découpage régional permet d'appréhender la nécessité de la mixité technologique.

Ex: LCOE éolien NG (à gauche) et PV au sol par régions

Le LCOE (€/MWh) peut être estimé comme la somme du CAPEX (€/MW/an) réparti sur les heures de fonctionnement et de l'OPEX (€/MWh)

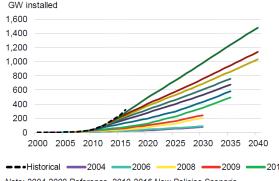
Coûts

L'Ademe et le photovoltaïque : faute avouée, à moitié pardonnée.

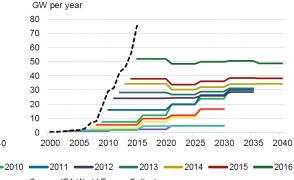
8 MAI 2016 | PAR NICOM | BLOG : LE BLOG DE NIC

photovoltaïque sonne comme u qu'estimé dans son scénario 100 surestimé.

Des anticipations de coût optimistes


La toute récente mise à jour par L'analyse des coûts réalisée par le rapport repose sur des anticipations de prix pour les différents composants (éoliennes, panneaux solaires, batteries, systèmes de stockage à air comprimé...) du système électrique modélisé. Puis par leur multiplication au nombre des composants du système. Un calcul théorique, sans réalité économique, laquelle serait pilotée par le coût d'une éventuelle transition. Des ingénieurs se sont déjà livrés à la critique de ces anticipations, les taxant d'irréalistes. Il est assez étonnant que cette étude ne montre pas un coût croissant avec le taux de pénétration des EnR dans le système, «c'est la seule étude de ce type qui arrive

Wind


Source: Bloomberg New Energy Finance

Global cumulative solar installations

Note: 2004-2009 Reference, 2010-2016 New Policies Scenario

Annual solar additions

Source: IEA World Energy Outlook

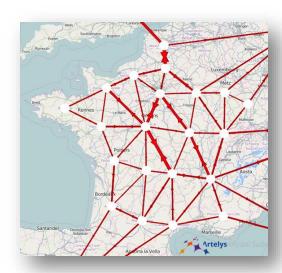
5

Coûts

Technologie	2014 LCOE	2050 LCOE
Eolien onshore	80 €/MWh	65 €/MWh
Eolien offshore	200 €/MWh	80 €/MWh
PV sol	150 €/MWh	60 €/MWh
PV toiture	250 €/MWh	85 €/MWh
Energies marines	300 €/MWh	110 €/MWh

L'évaluation des LCOE 2050 (réalisée en 2014) est basée sur une revue de la littérature (IEA, Fraunhofer, German Advisory Council on the Environment (SRU), US Department of Energy (DOE), etc.)

Les LCOE 2050 correspondent à une moyenne sur les régions françaises.


■ Il y a « foisonnement » des profils de production

- Profils locaux de demande et de production EnR intermittente
- Les pics et creux ne se produisent statistiquement pas exactement au même endroit au même moment
- La somme (sur les régions françaises) des profils est lissée

Modélisation d'un réseau inter-régional

- Les flux entre régions permettent de bénéficier du foisonnement...
- ...dans les limites des capacités d'échanges

Les capacités du réseau, de stockage, de flexibilité, et de production sont conjointement optimisées

Optimisation réalisée avec Artelys Crystal Super Grid

Scénarios de long-terme

Demande, coût des combustibles et du CO₂, scenarios climatiques

Système électrique

Capacités de production, capacités d'interconnexion, options d'investissement

Eléments de politique énergétique

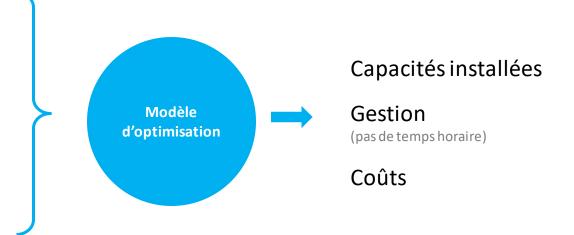
Capacités EnR, charbon, nucléaire, critère d'adéquation offre-demande

- Investissements
- Dynamique horaire
- Coûts de production
- Prix de l'électricité
- Revenus des acteurs
- Surplus
- Emissions de CO₂
- Effacement EnR
- ..

Notamment utilisé par la Commission de Régulation de l'Energie (CRE, France), le Bureau Fédéral du Plan (BFP, Belgique), la Commission Européenne (DG ENER), des groupes de recherche, etc.

Demande et sa flexibilité

Potentiels EnR


Technologies EnR

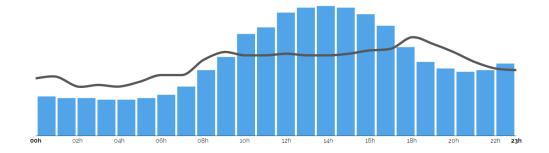
Technologies de stockage

Technologies « réseaux »

Description des pays voisins

(80% renouvelable)

Critère d'optimisation: minimisation des coûts


- Coûts annualisés (investissements et maintenance) pour EnR et stockage
- Coûts annualisés (investissements et maintenance) pour le réseau électrique
- Coûts variables (par exemple pour la biomasse)

Contraintes

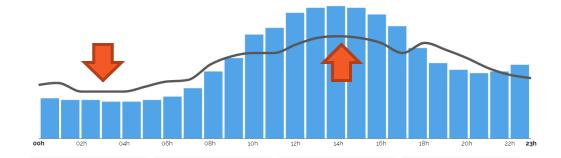
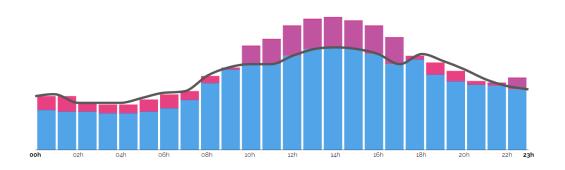
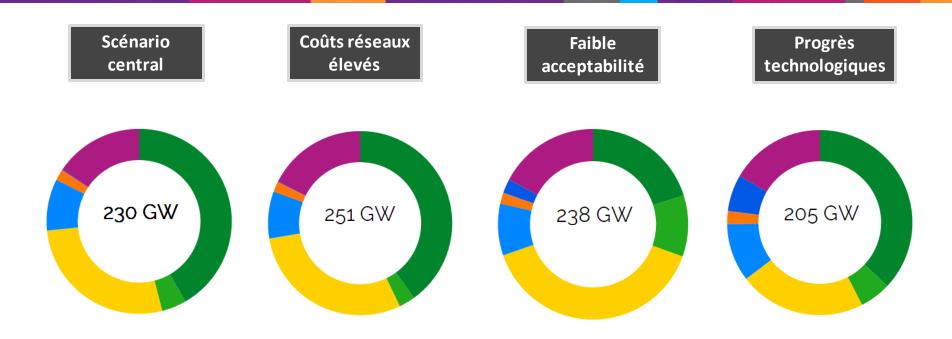

- Equilibre offre-demande horaire (8760 pas de temps, 7 années climatiques)
- Contraintes opérationnelles (e.g. stockage, flux sur le réseau, flexibilité)
- Solde importateur annuel nul; solde gaz de synthèse annuel nul

ILLUSTRATION DE L'USAGE DES FLEXIBILITÉS

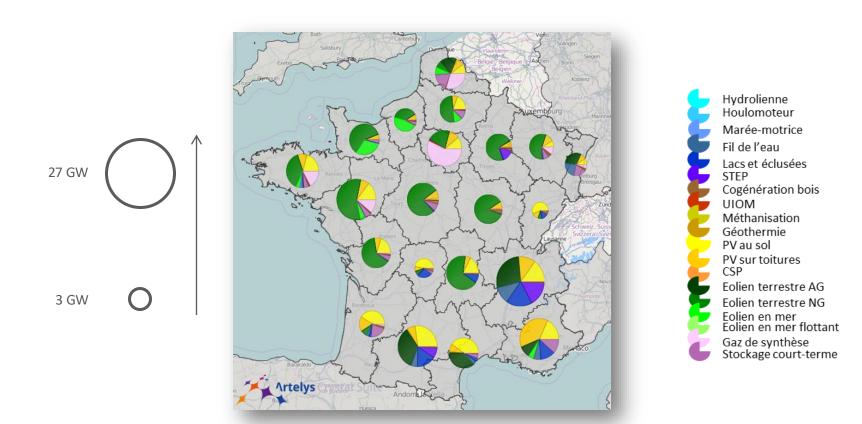

Situation originale

Exploitation de la flexibilité de la demande

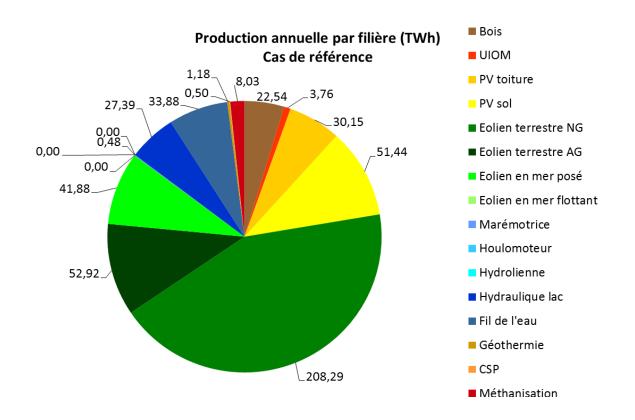

Exploitation des stockages et des imports/exports

PLAN DE LA PRÉSENTATION

- 1. Contexte et question de recherche
- 2. Méthodologie
- 3. Principaux enseignements
- 4. Conclusion


UNE DIVERSITÉ DE MIX 100% RENOUVELABLES

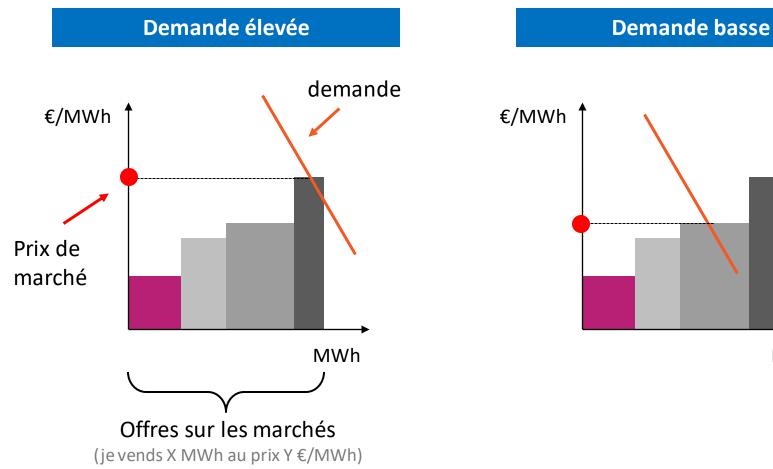
L'équilibre offre-demande peut être assuré sur les 7 années climatiques considérées, même pendant les périodes difficiles (années froides, apports hydrauliques faibles, etc.)

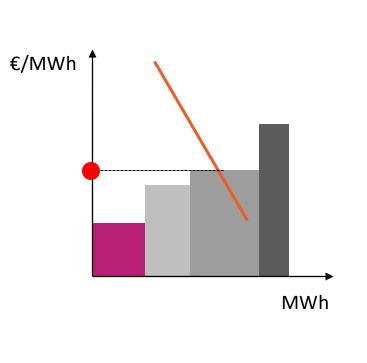

- Eolien onshore
- Eolien offshore
- Solaire
- Hydro

- Biomasse
- Géothermie
- Energies marines
- Stockage

Le portefeuille est très diversifié, même au niveau régional

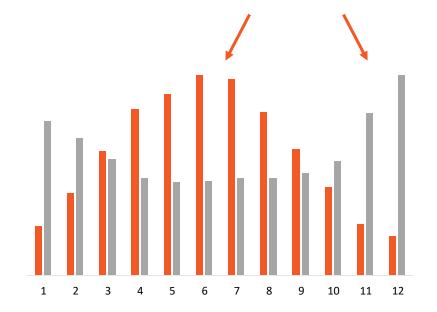
Les technologies ne sont pas uniquement sélectionnées sur base de l'ordre de préséance économique (LCOE), mais aussi sur la base des services rendus au système




Le portefeuille est très diversifié, même au niveau régional

Les technologies ne sont pas uniquement sélectionnées sur base de l'ordre de préséance économique (LCOE), mais aussi sur la base des services rendus au système

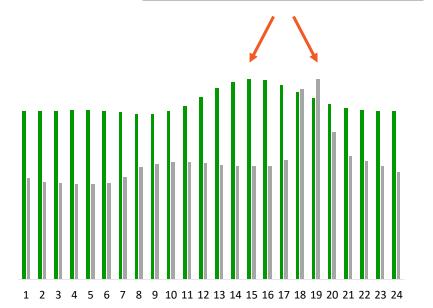
Une technologie qui produit pendant les heures de demande haute est plus rentable

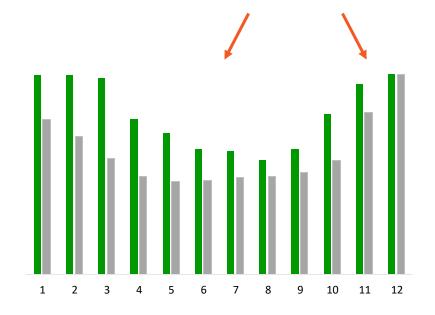


Corrélations prix-production – PV

Mauvaise corrélation entre production et prix horaires

.. et entre production et prix mensuels

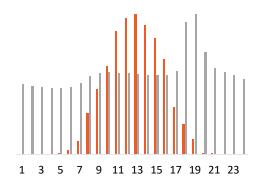


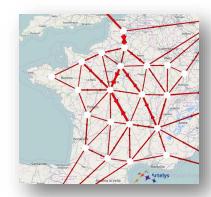


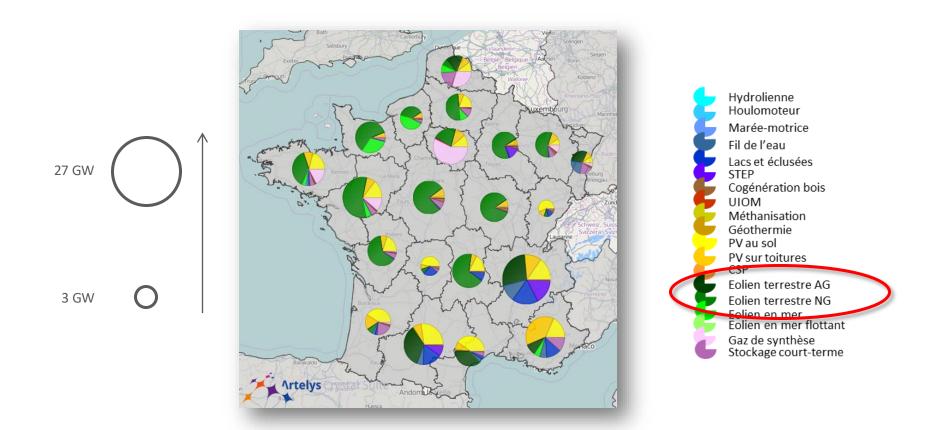
Corrélations prix-production – Eolien

Meilleure corrélation entre production et prix horaires

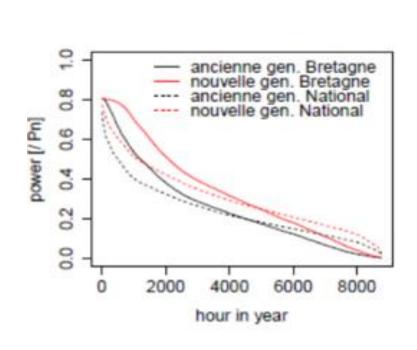
.. et entre production et prix mensuels

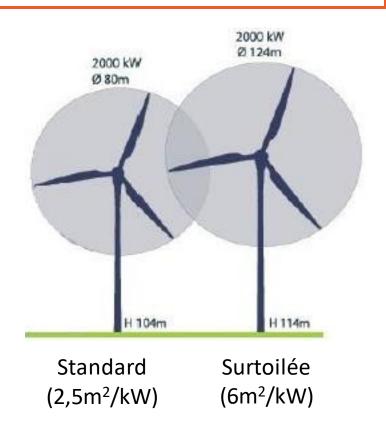

Le portefeuille de technologies est donc sélectionné en considérant:


Coûts (LCOE)


Revenus (corrélation productionprix)

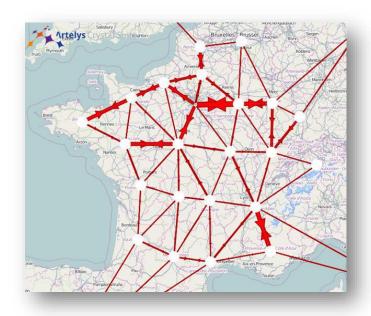
Arbitrages locaux (réseaux)

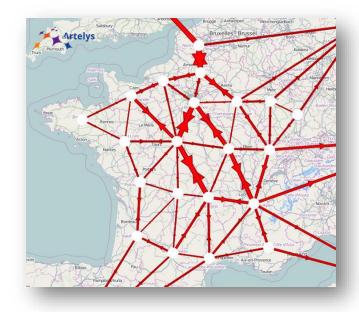



Le portefeuille est très diversifié, même au niveau régional

Les technologies ne sont pas uniquement sélectionnées sur base de l'ordre de préséance économique (LCOE), mais aussi sur la base des services rendus au système

75% des éoliennes onshore sont surtoilées (nouvelle génération)

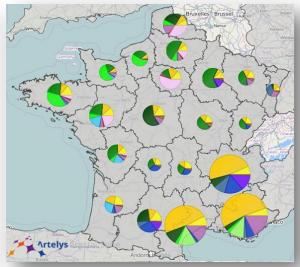

Ces éoliennes disposent de pales plus longues, captant mieux les vents faibles, ce qui fait augmenter le nombre d'heures équivalent à plein puissance (full load hours)

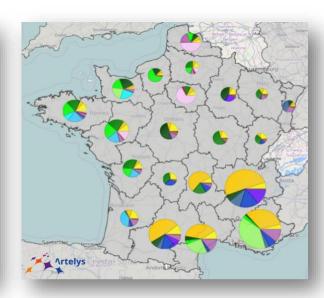


La capacités d'échange interrégionales augmentent d'environ 40% (de 50 GW à 68 GW)

Les capacités d'échanges avec les pays voisins sont fixées en amont (23 GW à l'export, 16 GW à l'import)

Réseau adapté 2014

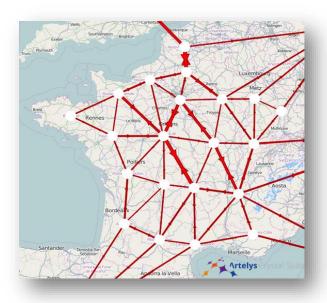

Réseau optimal 2050

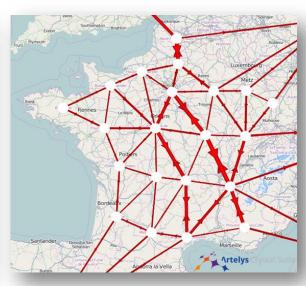

UNE DIVERSITÉ DE MIX 100% RENOUVELABLES

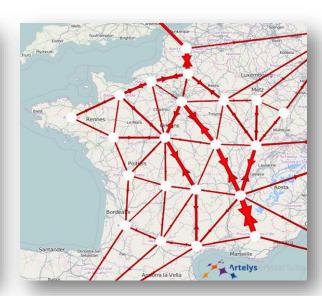
Impact d'une réduction de l'acceptabilité

Potentiels réduits pour l'éolien onshore et les fermes PV

Acceptabilité élevée

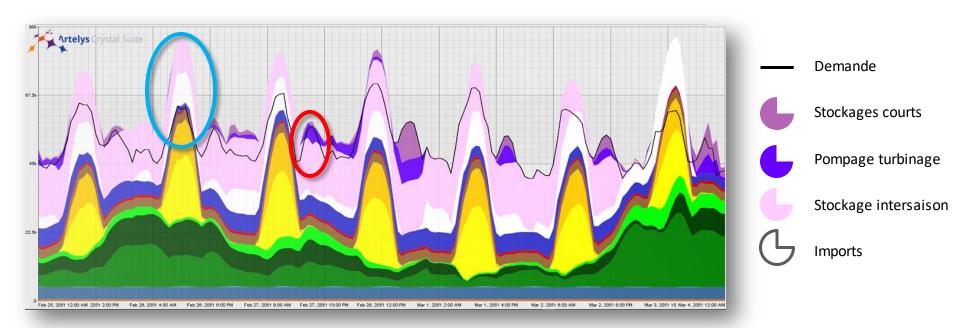

Acceptabilité réduite




UNE DIVERSITÉ DE MIX 100% RENOUVELABLES

Impact d'une réduction de l'acceptabilité

Potentiels réduits pour l'éolien onshore et les fermes PV

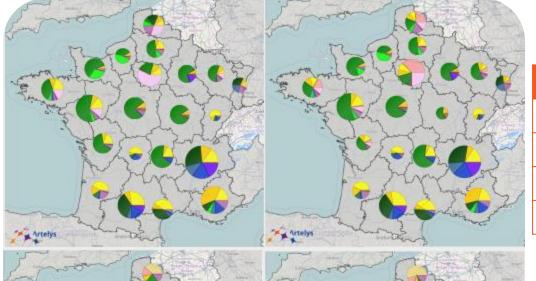


Acceptabilité élevée

Acceptabilité réduite

Semaine avec faible disponibilité éolienne

- Les stockages de long-terme sont utilisés pour remplir les stockages de court-terme
- Toutes les technologies de stockages sont utilisées en même temps pour passer la pointe


Les capacités thermiques remplacent progressivement EnR et stockages

100%

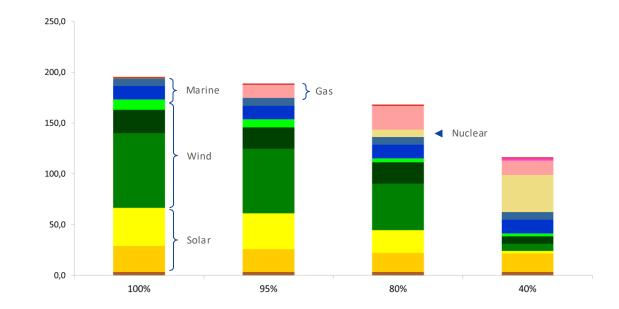
Tech.	Capacity
Gas	-
Nuclear	-
Renew.	196 GW
Storage	36 GW

80%

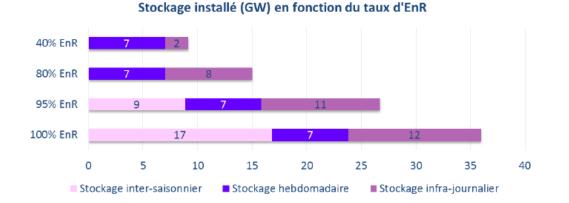
Tech.	Capacity
Gas	23 GW
Nuclear	7 GW
Renew.	138 GW
Storage	15 GW

95%

Tech.	Capacity
Gas	13 GW
Nuclear	-
Renew.	176 GW
Storage	27 GW

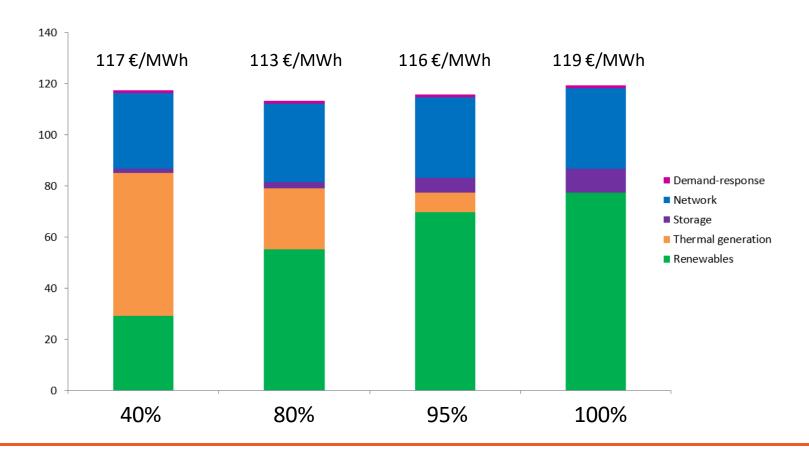

40%

Tech.	Capacity
Gas	16 GW
Nuclear	37 GW
Renew.	64 GW
Storage	9 GW

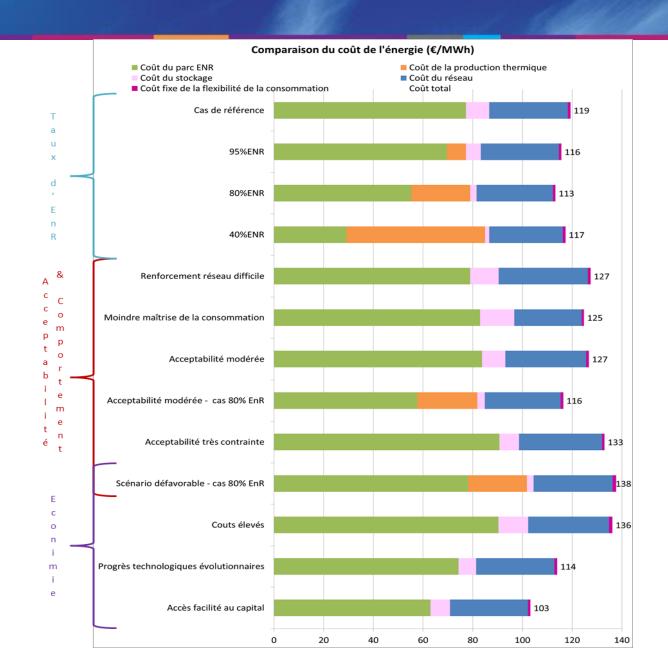

Installed capacities in GW

Le nucléaire refait son apparition dans le scénario 80% EnR

La première technologie EnR à disparaitre est l'éolien



Il est possible de se passer de stockage intersaisonnier dans des scénarios à 80% EnR



Levelised costs of energy (LCOE)

Nos analyses de sensibilité révèlent que le LCOE varie entre 103 et 138 €/MWh

PLAN DE LA PRÉSENTATION

- 1. Contexte et question de recherche
- 2. Méthodologie
- 3. Principaux enseignements
- 4. Conclusion

Un portefeuille technologique diversifié est nécessaire

Les réseaux permettent de profiter des complémentarités régionales

Une gestion « intelligente » des stockages et de la flexibilité de la demande est nécessaire

Les impacts économiques sont modérés (+2% pour passer de 40 à 100% EnR)

Les mix 100% renouvelables sont robustes aux variations climatiques

L'équilibre offre-demande est maintenu dans toutes les situations

Rapport et ses annexes

- Modèle
- Coûts
- Gisements
- Consommation
- ...

Site web ADEME

(http://mixenr.ademe.fr)

- Production au pas de temps horaire
- Flux transfrontaliers
- ..

4 Artelys OPTIMIZATION SOLUTIONS

Merci pour votre attention!

christopher.andrey@artelys.com