

26.05.2016

- 1. International state of research
- 2. Swiss research studies
- 3. Possible causes of the performance gap
- 4. The role users, operators and design standards
- 5. Conclusion and outlook

n Consult GmbH Perfo

Performance Gap - Switzerland 2. BFE Study "Performance control of building energy standards" - Scope

First overall performance control of "Minergie" standards in comparison to "MuKEn" standard on behalf of the federal bureau of energy (BFE):

- → Interviews
- ightarrow Energy consumption evaluations
- 3 building categories: 6
- Single-family houses
- Apartment buildings
- Offices

6 building energy standards: Minergie new construction Minergie renovation Minergie-P new construction Minergie-A new construction MuKEn new construction MuKEn renovation

26.05.2016 10

26.05.2016 11

Lemon Consult GmbH Performance Gap

Performance Gap - Switzerland Goals and target groups

Goals:

- > Find drivers behind the construction and use of Minergie houses
- Evaluate experiences in different stages (planning, construction, operation)
- > Assess customer satisfaction

Target groups:

- ➤ Builders
- > Architects
- ➢ Planners
- > Operators

non Consult GmbH Performance Gap

Users

Performance Gap - Switzerland Evaluation of the certification and verification process

Performance Gap - Switzerland Satisfaction with indoor air quality and noise protection How satisfied are you with the following conditions (1: not at all, 4: very much)? 3.7 Noise protection 3.5 3.5 Indoor air quality 3.5 3.4 Ventilation system

TTICUIT D	ullair	ig re	cruiti	ment	proc	ess	
Builders	Minergie Neubau	Minergie Umbau	Minergie- P Neubau	Minergie- A Neubau	MuKEn Neubau	MuKEn Umbau	Total
Addressed	766	791	1′010	51	1′524	1′517	5′659
Participants in Online-survey	250 (33%)	319 (40%)	396 (39%)	22 (43%)	108 (7%)	132	1′227 (22%)
ready for on-site	105 (42%)	182 (57%)	235 (59%)	8 (36%)	27 (25%)	34 (26%)	591 (48%)
Share of drop-outs due to missing or non-usable data	60%	60%	79%	75%	74%	71%	69%
Accomplished nspections	54	68	44	5	19	24	214

Performance Gap - Switzerland Possible causes for the exceeding energy consumption in apartment buildings

Observations during on-site inspections:

sult GmbH Performance Gap

- 1. Functional problems or faulty settings in the building systems
- 2. Low efficiency level of the heating system (high supply or boiler temperatures)
- 3. High energy consumption due to heat tape ("bande chauffante") and heating rods in boilers.
- Conclusion: By setting the basic parameters of the heating- and ventilation systems, operators have a *much bigger influence* on the level of overall energy consumption than the users.

26.05.2016

Performance Gap - Existing buildings Apartment building - Standard calculations vs. actual heating consumption

15

Performance Gap - Existing buildings U-Value - Measurement vs. Calculation

Method	Absorption coefficient	Heat transfer coefficient	U-Value		
		h_il h_e W/m ² K	W/m²K		
Messung dT gemessen 2015/16	-	-	1.40	Facade	
Messung dT Standard SMA 2015/16	-	-	1.05	Concrete 15 cm Cork 2 cm Brick 5 cm Plaster 2 cm	
Berechnung statisch	-	7.7 / 25	1.37		
Berechnung statisch	-	5.6 / 4.0	1.01		
WUFI Simulation Putz hell	a = 0.3	5.6 / 4.0	0.96		
WUFI Simulation Putz dunkel	α = 0.6	5.6 / 4.0	0.86		
nn Consult GmbH - Performance Gan				26.05.201	6

Performance Gap – Possible causes Hypotheses on the heat production side (AWEL)						
$E_{h+ww} = E_h$ BSP. MFH	$+E_w$	$_{w} = \frac{Q_{h} - Q_{h,sol}}{\eta_{h}} +$	$\frac{Q_{ww} - Q_{ww,sol}}{\eta_{ww}}$			
Theoretical consum Heat pump	ption	$\frac{150+0}{4} + \frac{75+0}{2.5} = 68$	$MJ/m^2 = 37.5 kWh/m^2$			
Actual consumption Heat pump		$\frac{250+0}{4.5} + \frac{35+0}{2.5} = 70$	$\frac{MJ}{m^2} = 38.6 kWh/m^2$			
Theoretical consum Gas + solar	ption	$\frac{100-10}{0.95} + \frac{75-40}{0.92} = 13$	$3 MJ/m^2 = 36.9 kWh/m^2$			
Actual consumption Gas + solar		$\frac{180 - 20}{0.90} + \frac{35 - 25}{0.87} = 18$	$9 MJ/m^2 = 52.6 kWh/m^2$			
Lemon Consult GmbH Performance Gap	sult GribH Performance Cap 26.05.2016 58					

Performance Gap – Possible causes Conclusions – the role of operators

- Especially in large buildings, the role of the building operator becomes more important
- Usually service companies are in charge for heating and ventilation
- Service companies tend to impose very conservative control settings (less complaints = higher revenue), leading to substantially higher actual energy consumptions
- The "operator effect" has to be considered

Performance Gap – Possible causes Conclusions – the role of design standards

By defining non-representative standard parameters, design standards contributes substantially to the performance gap. The following corrections are suggested:

- Higher indoor air temperatures, e.g. 22 instead of 20°C
- Reduction of solar gains due to shading in winter
- Lower b-Values against unheated spaces
- Lower heat transfer coeffcients, e.g. outside 5 instead of 25 W/(m²K)

26.05.2016 61

- Climate correction for heat islands in urban areas
- Lower occupancy rates
- Lower demand of domestic hot water

Lemon Consult GmbH Performance Gap

