Conditions de développement du chauffage collectif au bois en Suisse

Exemple de Cartigny et comparaison avec l'expérience française

Floriane MERMOUD 21 février 2013

avec la collaboration d'Anthony Haroutunian et Jérôme Faessler

Introduction

- Ressources biomasse
- Problématique du chauffage à distance au bois : pourquoi le projet Audit'bois ?
- Retour d'expérience sur l'installation de Cartigny et mise en perspective :
 - → Points critiques (d'un point de vue technique)
 - → Coût de la chaleur produite
- Conditions cadres pour le développement du chauffage à distance au bois
 - → Institutionnelles et organisationnelles
- Conclusions

Ressource(s) biomasse

Biomasse=matière organique d'origine animale ou végétale

résidus de l'industrie agroalimentaire

paille de blé/maïs son de blé marc de raisin balle de riz tiges de coton bagasse tourteaux de soja/colza refus (fonds de silo)

BOIS

ENERGIE

CULTURES ENERGETIQUES

céréales

blé maïs colza tournesol triticale sorgho canne à sucre

arbres

saule peuplier eucalyptus acacia

Séminaire Vincent Feuillette (Enea Consulting) sur les biocarburants le 21/03/13

ıvelles »

niscanthus witchgrass

industrie du bois

écorces sciure/granulés palettes cagettes

exploitation forestière

plaquettes résidus d'entretien (rémanents) DECHETS ORGANIQUES

Séminaire Jérôme Faessler (Unige) le 7/03/13

verts

agriculture

lisiers fumiers

nent – Floriane MERMOUD – 21/02/13

Ressources disponibles

- Nombreuses ressources...
- ... mais potentiel restreint
- Agglomération franco-valdo-genevoise
 - → besoins énergétiques de l'AFVG : 23'000 GWh/an
 - → biomasse actuelle=1.3%
 - → potentiel +0.5 à 2%
 - → 2 à 3% des besoins (en raisonnant sur le territoire)

	l				I	
		GISEMENT (Estimations)				
		BRUT	ACCES- SIBLE	MOBILI- SABLE	DÉJÀ MOBILISE ENERGIE	DÉJÀ MOBILISE MATIERE
Bois Naturel	GWh	1'274	698	43 à 166	153	182
Bois Déchets	GWh	240	240	0 à 240	144	96
Coproduits agricoles	GWh	1'523	1'208	49	0	1'523
Déchets organiques ménagers	GWh	243	53	14	2	37
Déchets organiques industriels	GWh	90	34	12	22	
SOMME	GWh	3'370	2'233	118 à 481	310	1'849

Jérôme Faessler (Unige), 2010

Ressources disponibles

- Nombreuses ressources...
- ... mais potentiel restreint
- Suisse
 - → besoins énergétiques de la Suisse : 250 TWh/an
 - → bois actuel=4%
 - → potentiel selon Politique forestière 2020 de la confédération +2%
 - → 6% des besoins

	Utilisation en 2008		Potentiel supplé- mentaire en 2020		Potentiel en 2020	
	m3	TWh	m3	TWh	m3	TWh
Bois-énergie de forêt	2.1	5.3	1	2.9	3.1	7.6
Reste bois-énergie	2.2	4.4	1	1.4	3.2	6.4
Total	4.3	9.7	2	4.3	6.3	14.0

Claire-Lise Suter Thalmann (OFEV), 2012

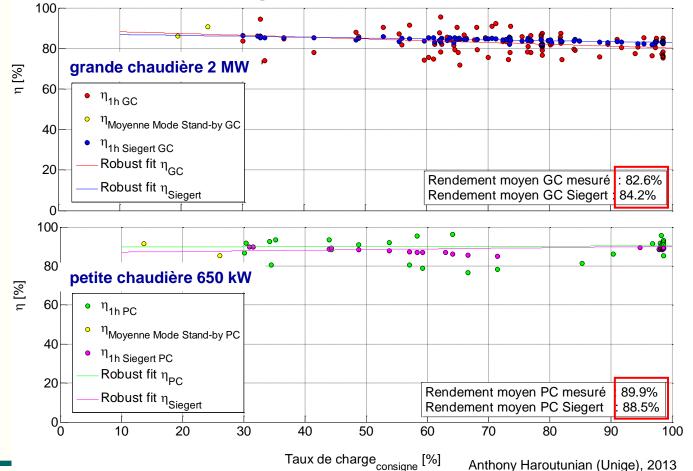
Chauffage à distance (CAD) au bois

- Faut-il le développer ?
 - → La combustion du bois prédispose à une centralisation de la production
 - importance des coûts d'investissement
 - nécessité d'une vraie exploitation
- Problématique : comment parvenir à contenir le coût du kWh produit ?
 - → Aspects techniques → économiques
 - performance énergétique et environnementale
 - dimensionnement et complémentarité entre les énergies
 - densité réseau
 - → Aspects institutionnels et organisationnels
 - volonté politique
 - dispositif de subventions (fonds)
 - diffusion des bonnes pratiques
 - exploitants spécialisés

Projet Audit'bois

- Retour d'expérience sur le CAD au bois de Cartigny (CABC)
 - → 2 chaudières bois (2 MW et 650 kW), 1 chaudière mazout de secours
 - → mise en service en 2008
 - → 5.8 km de réseau, ~120 raccordements (essentiellement villas)
 - → énergie vendue : 5 GWh/an, prix prévu : 14 cts/kWh
 - → acteurs :
 - maître d'ouvrage : CABC
 - bureau d'ingénieurs : Jean Putallaz
 - chaudiériste : Müller

fourniture des plaquettes forestières et exploitation : Energie durable SA

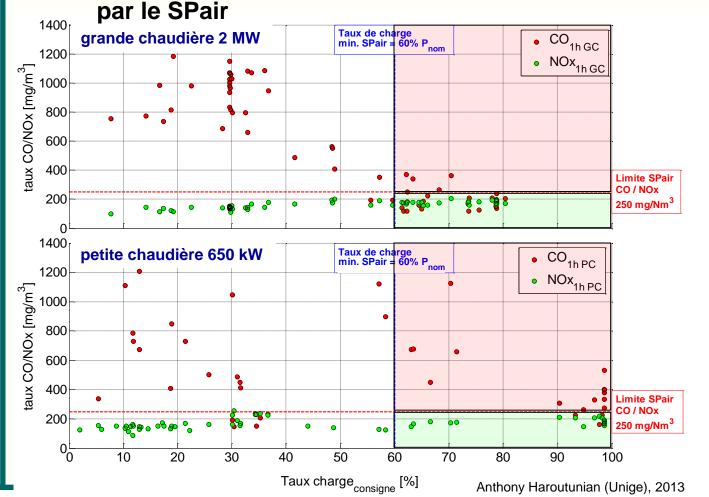

Projet Audit'bois

Objectifs du projet

- → Influence du fonctionnement à charge variable sur le rendement de la chaudière et les émissions atmosphériques
 - Instrumentation de l'installation (~20 points de mesure) sur une année complète + campagnes de mesures (rendement et émissions)
- → Analyse du dimensionnement
- → Analyse du coût du kWh
- → Enseignements et bonnes pratiques
- → Participation au projet et financement :
 - Mairie de Cartigny
 - Serbeco / Energie durable
 - Service de l'énergie / Direction générale de la Nature et du Paysage / Service de la protection de l'air
 - Bureau Putallaz Ingénieurs Conseils
 - Müller
 - Energie Bois Suisse
 - Fondation Schmidheiny

Quelques résultats : rendement

- Rendement en fonction du taux de charge
 - → Développement d'une méthodologie de mesure spécifique
 - → Mesures de rendement instantané sur chaque chaudière sur toute la plage de fonctionnement

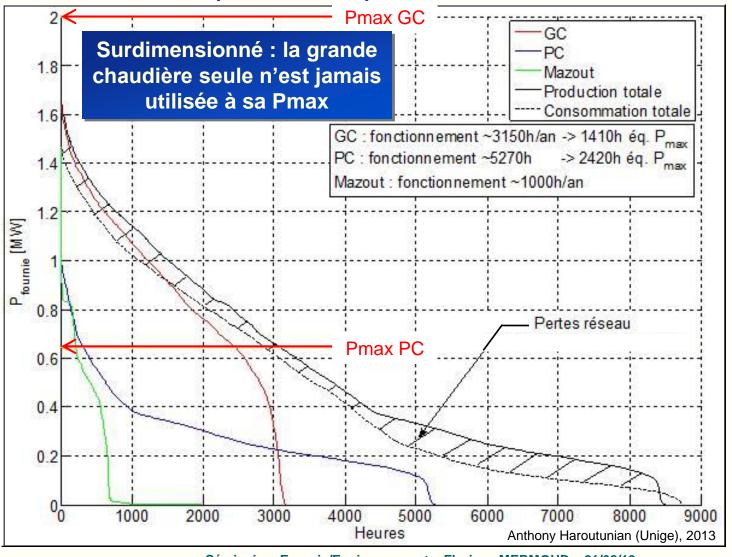

Rendement constant sur toute la plage de fonctionnement

Bon niveau de rendement

Quelques résultats : émissions atmosphériques

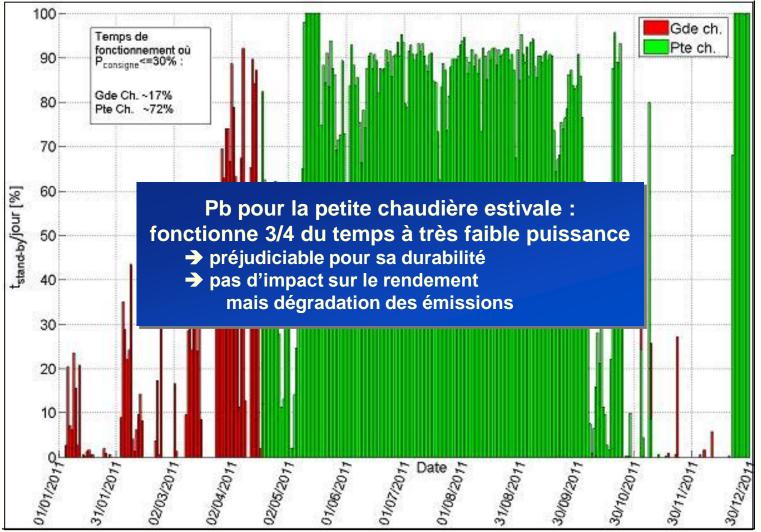
- **■** Emissions de CO et NOx en fonction du taux de charge
 - → Appareil de mesure portable Testo

→ Comparaison de nos mesures avec celles effectuées en simultané

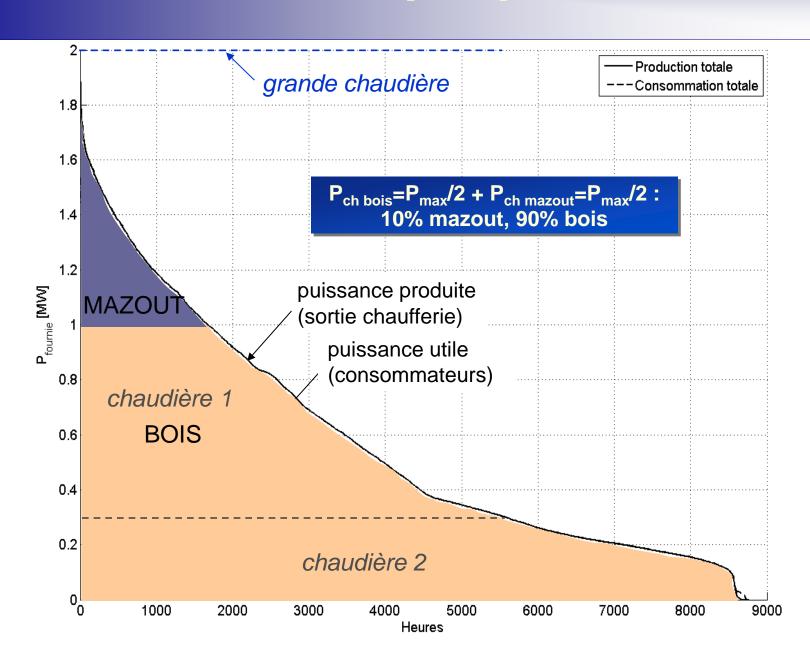


Emissions NOx
-OK pour les deux
chaudières

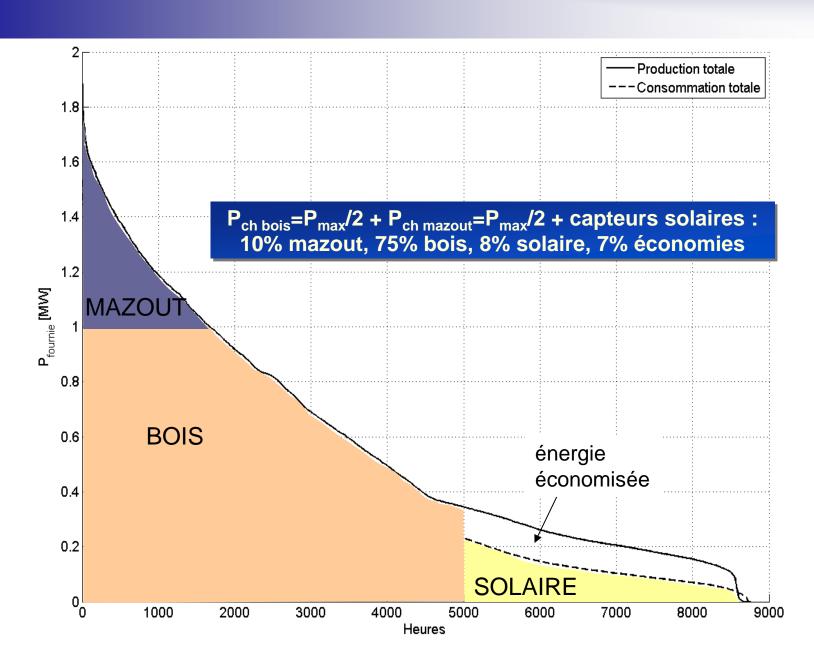
Emissions CO
-OK pour la GC,
pourraient être
améliorées par
réglages
pour la PC
-Forte dégradation
à faible puissance
pour les deux
chaudières


Analyse du dimensionnement

Courbes classées (année 2011)

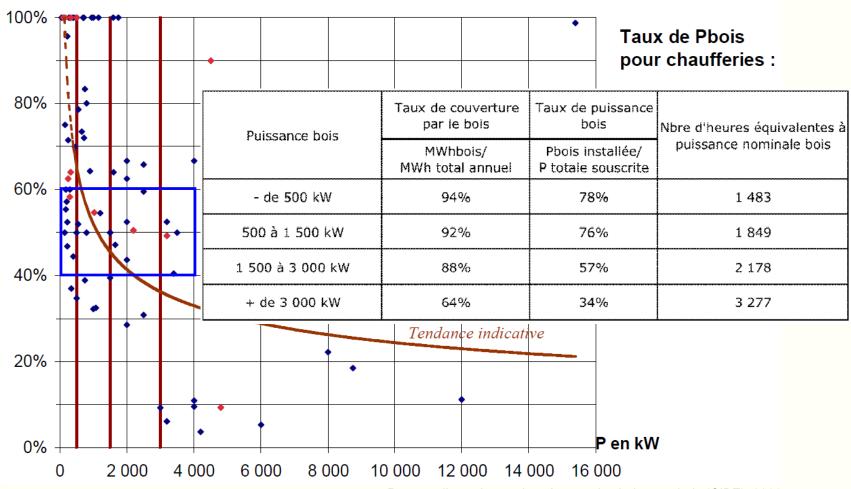

Impact sur le fonctionnement des chaudières

Temps de fonctionnement des chaudières en mode stand-by/30%



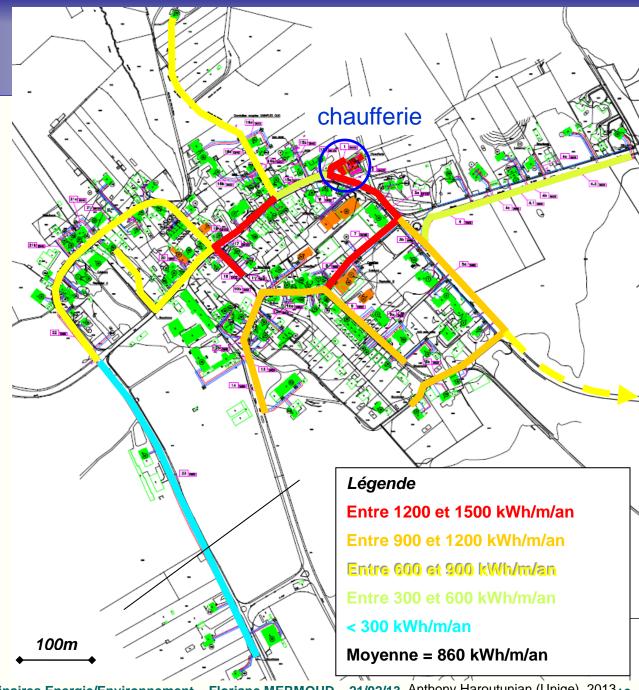
Anthony Haroutunian (Unige), 2013

Bonnes pratiques

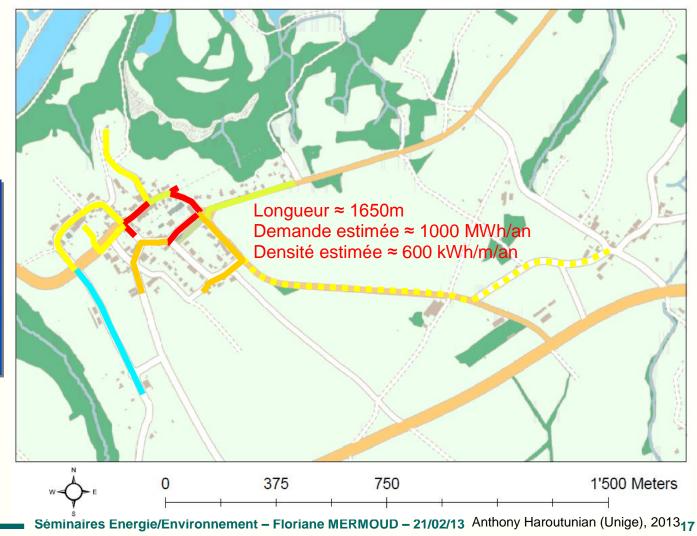

Complémentarité entre les énergies

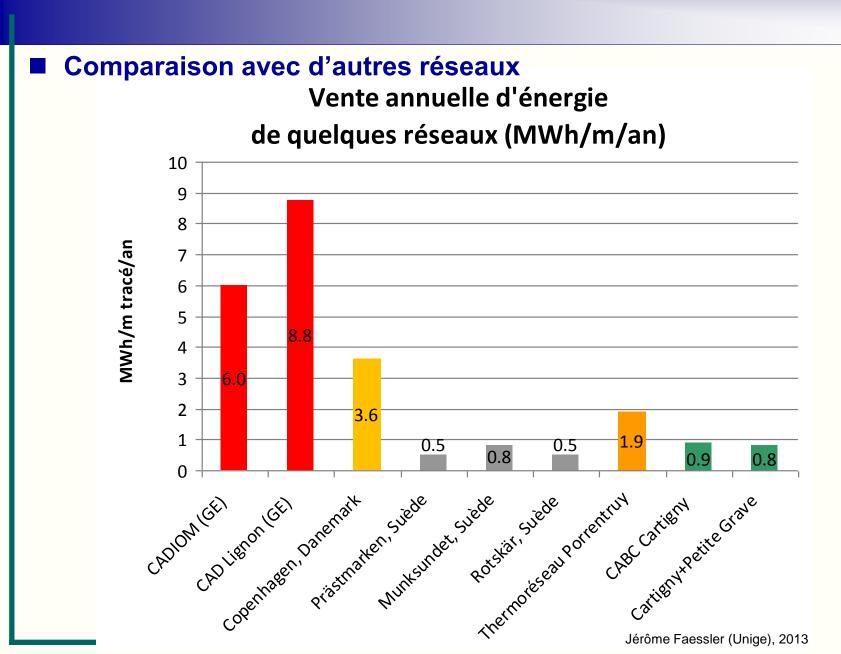
Bonnes pratiques

Dimensionnement des chaudières bois sur les réseaux français

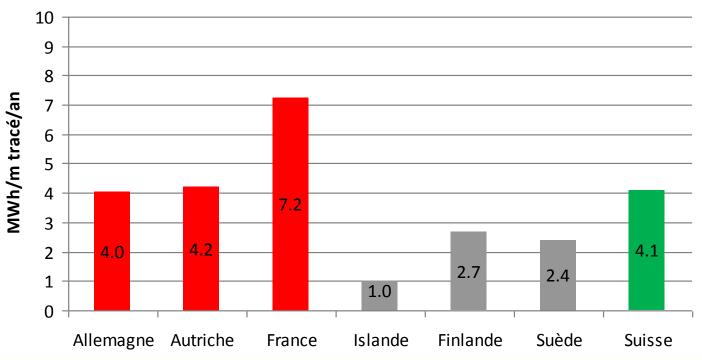


Rapport d'enquête sur les réseaux de chaleur au bois (CIBE), 2009

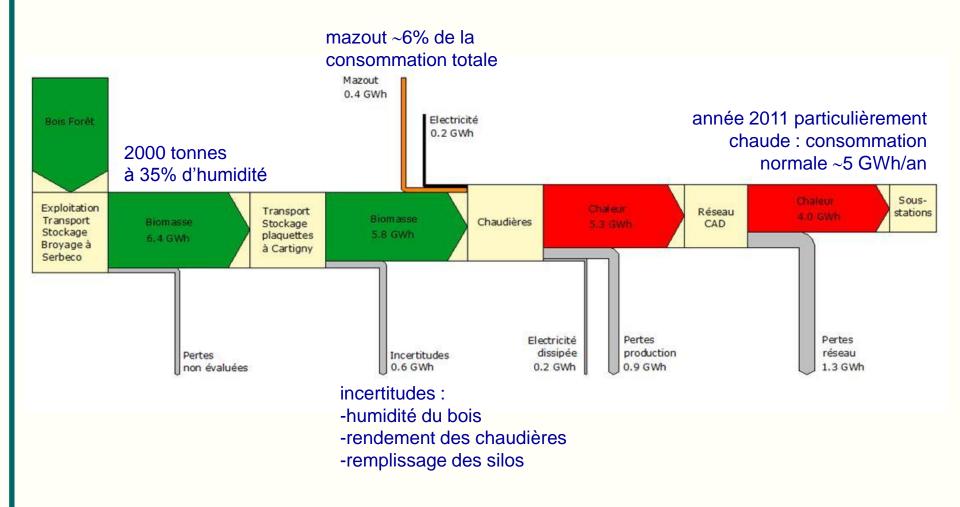

Cas du CAD au bois de Cartigny


> Densité CABC : 0.86 MWh/m/an Densité moyenne réseaux suisses: ~4 MWh/m/an

- Projet d'extension du réseau jusqu'à La Petite Grave
 - → Objectif : mieux utiliser la capacité des chaudières
 - → 1.65 km de réseau pour 1 potentiel max de 1 GWh/an

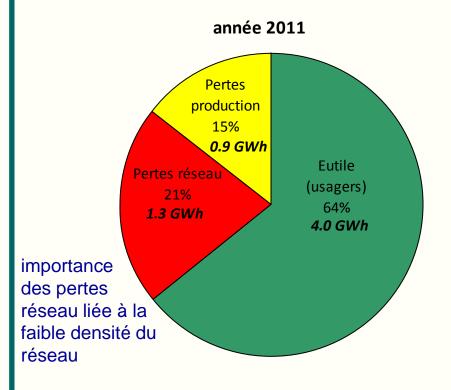

Densité CABC
avant extension :
0.86 MWh/m/an
Densité CABC
après extension :
0.8 MWh/m/an
encore plus faible

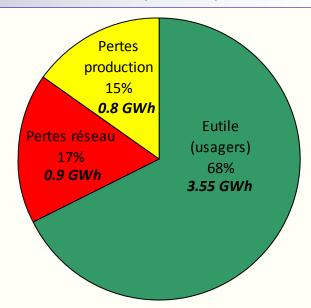
Comparaison avec d'autres pays


Vente annuelle d'énergie du réseau moyenne par pays (MWh/m/an)

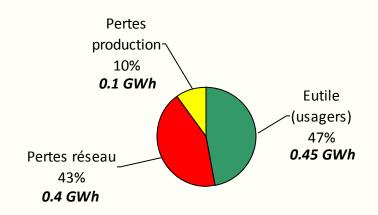
Jérôme Faessler (Unige), 2013

Bilan énergétique sur l'année 2011

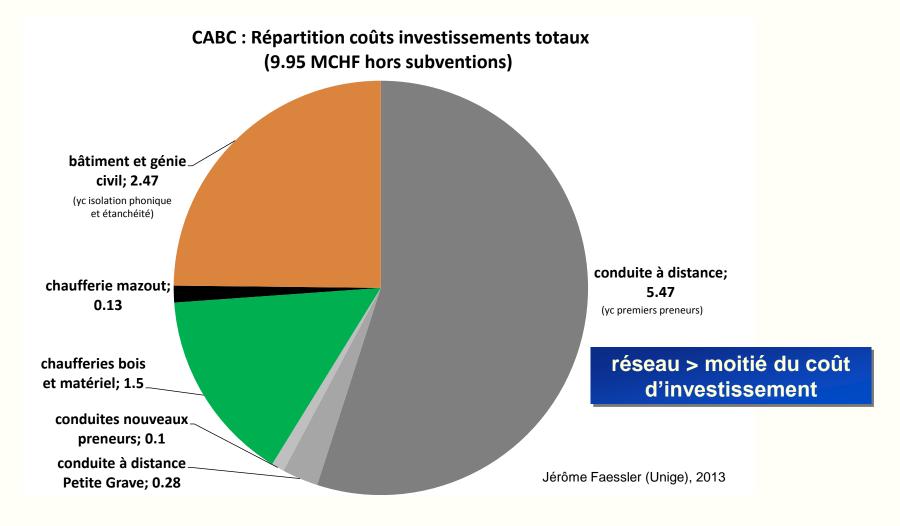

Diagramme de flux Cartigny (année 2011)


Bilan énergétique sur l'année 2011

hiver (oct-avril)

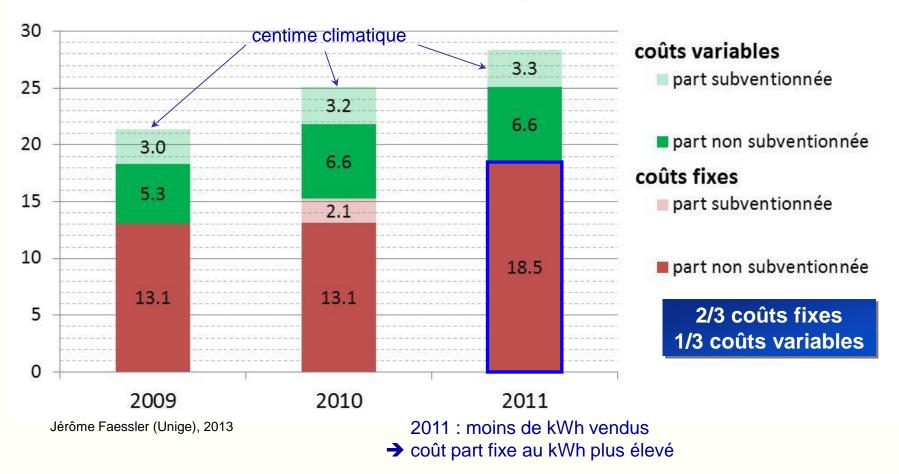

Répartition des pertes (année 2011)

rendement global annuel installation = 64%

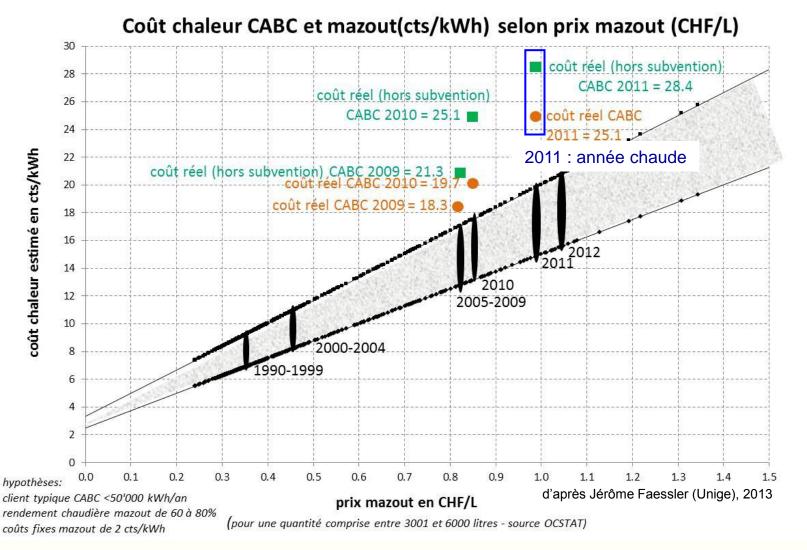


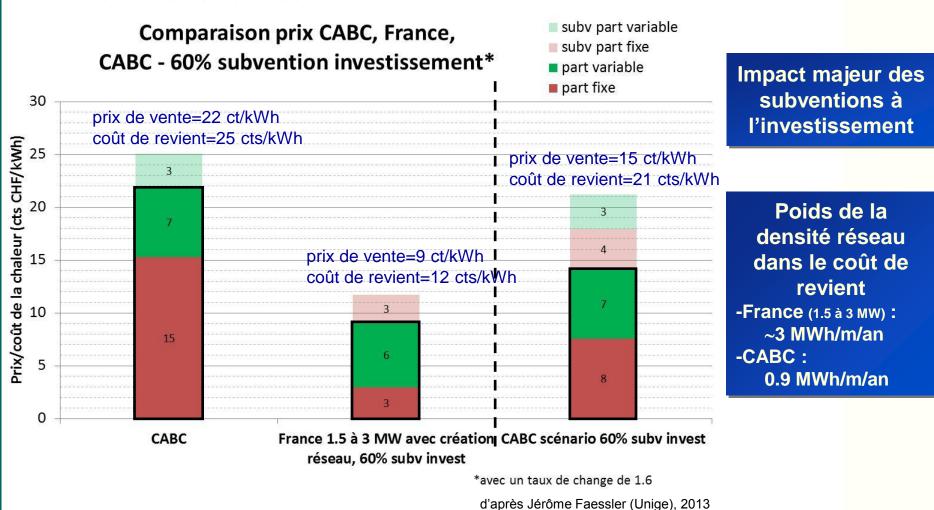
été (mai-sept)

Investissements


Retour d'expérience sur le CAD au bois de Cartigny

Coût de la chaleur produite

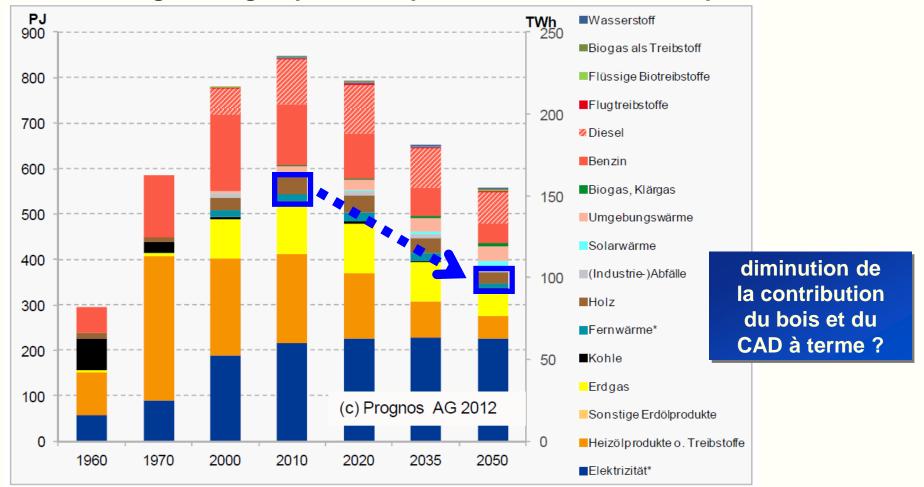

Retour d'expérience sur le CAD au bois de Cartigny


Coût de la chaleur produite

Comparaison avec le coût de la chaleur mazout

Coût de la chaleur produite

 Comparaison avec la France, influence du taux de subvention et de la densité réseau



Séminaires Energie/Environnement – Floriane MERMOUD – 21/02/13

Conditions cadres pour le développement du CAD au bois

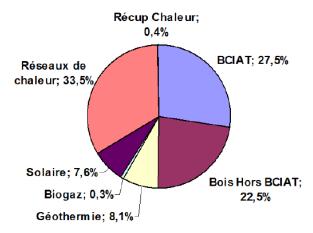
■ Nécessité d'un cadre institutionnel favorable → volonté politique

→ Stratégie énergétique 2050 : place du bois et des CAD pas claire

Graphique 2: Composition de la consommation finale d'énergie (sans la consommation de carburant du trafic aérien international) jusqu'en 2020, 2035, 2050 sur la base du présent paquet de mesures du DETEC (source: Prognos)

26

Conditions cadres pour le développement du CAD au bois


- Nécessité d'un cadre institutionnel favorable → volonté politique
 - → Stratégie énergétique 2050 : place du bois et des CAD pas clair
 - → Promotion des énergies renouvelables thermiques = compétence déléguée aux cantons : pas de conditions cadres fédérales
 - → Dispositif de subventionnement : nécessité d'un fonds <u>alimenté</u> pour le développement des réseaux thermiques

Subventions

- Taux de subvention à l'investissement observés :
 - → CABC Cartigny : 1.5% (2008)
 - → Thermoréseau Porrentruy : 9% (1999) + prêt à taux 0 sur 40% du montant de l'investissement
 - → France (fonds chaleur) : ~50% (2009-2011)
 - → Nécessité d'un cadre de subventionnement en Suisse pour le développement des réseaux thermiques (pas seulement au bois)
- Fonds chaleur ADEME :
 - → 230 M€/an pour la promotion des énergies renouvelables thermiques (collectivités et entreprises)
 - → objectif : prix de vente de la chaleur <5% aux énergies conventionnelles</p>
 - → conditions subv. réseau : >50% EnR, densité >1.5 MWh/m/an

33% création/extension réseaux de chaleur 50% biomasse

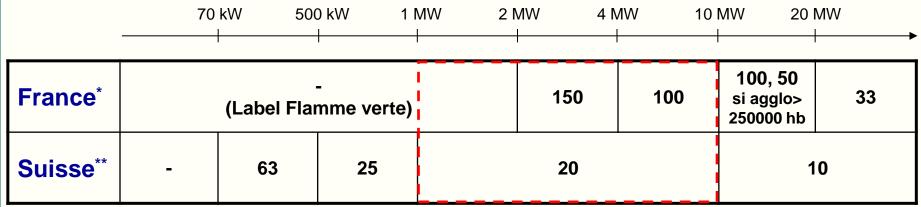
Répartition des aides ADEME sur les opérations d'investissement 2009-2011

Michel Cairey-Remonnay (ADEME), 2012

Subventions

- Programmes d'encouragement cantonaux dans le domaine de l'énergie
 - → 130 MCHF/an pour le développement des énergies renouvelables, l'utilisation des rejets de chaleur et les techniques du bâtiment (particuliers et collectivités)

2009-2011	Programmes cantonaux (CH)	Fonds chaleur (F)
enveloppe	130 MCHF/an	230 M€=275 MCHF/an
part dvpt CAD bois (part totale bois)	<5% (10-15%)	>50% (>80%)
en CHF/an	~6 MCHF/an	~140 MCHF/an
en CHF/hb/an	0.75 CHF/hb/an	2.2 CHF/hb/an


- Nécessité d'un fonds alimenté
 - → augmentation de la taxe sur les combustibles proposée en 1975 et 1986 2 et 3.5 cts/L mazout (refusé les 2 fois)
 - aurait permis de constituer un fonds de 150 MCHF/an (<20 CHF/hb/an)
 - → ex. du Danemark : dès les années 80, politique de développement des RC (obligation de connexion), taxe sur les combustibles depuis 1986
 - 60% des citoyens desservis par un RC, développement massif des CCF

Conditions cadres pour le développement du CAD au bois

- Nécessité d'un cadre institutionnel favorable → volonté politique
 - → Stratégie énergétique 2050 : place du bois et des CAD pas clair
 - → Promotion des énergies renouvelables thermiques = compétence déléguée aux cantons : pas de conditions cadres fédérales
 - → Dispositif de subventionnement : nécessité d'un fonds <u>alimenté</u> pour le développement des réseaux thermiques
 - → Cadre réglementaire

Emissions atmosphériques

- Comparaison des valeurs limites d'émissions en France et en Suisse
 - → CO, NOx : semblable en France et en Suisse
 - → poussières : VLE en mg/Nm³ à 11% O₂ dans les fumées

^{*} en cours de durcissement

- France : multicyclone encore suffisant si P<4 MW</p>
- Suisse : électrofiltre ou filtre à manche obligatoire dès 70 kW

surcoût 20 à 100%

^{**} depuis le 1^{er} janvier 2012

Conditions cadres pour le développement du CAD au bois

- Nécessité d'un cadre institutionnel favorable → volonté politique
 - → Stratégie énergétique 2050 : place du bois et des CAD pas clair
 - → Promotion des énergies renouvelables thermiques = compétence déléguée aux cantons : pas de conditions cadres fédérales
 - → Dispositif de subventionnement : nécessité d'un fonds <u>alimenté</u> pour le développement des réseaux thermiques
 - → Cadre réglementaire
- Organisation de la filière
 - → Associations faitières fortes dans le domaine du bois et du CAD
 - meilleure diffusion des bonnes pratiques (techniques et économiques)
 - lobbying
 - cf. France : CIBE (bois-énergie) / AMORCE, Via Seva, SNCU (CAD)
 - → Structuration des professionnels
 - exploitants spécialisés, contracting
 - généralisation du Quality Management dès la conception
 - → Ressource bois

Conclusions

Retour d'expérience sur Cartigny

- → Les chaudières fonctionnent au mieux
- → Rendement global moyen (65%) à cause des pertes réseau (20%)
- → Pb intrinsèque à l'installation : densité réseau trop faible
 - 0.9 MWh/m/an pour un seuil de rentabilité à 1.5
 - se ressent sur le coût de la chaleur produite (25 cts/kWh, après subvention 22 cts/kWh)
- → Enseignements à tirer
 - dimensionnement de la chaudière bois à 50% de la Pmax, exploiter la complémentarité entre les énergies
 - chercher des densités réseau >1.5 MWh/m/an

■ Conditions cadres pour le développement du CAD au bois

- → Meilleur partage du savoir-faire / exploitants spécialisés
- → Nécessité d'un cadre de subventionnement via un fonds alimenté pour les réseaux thermiques dans l'objectif d'atteindre des taux de subvention significatifs

Pour en savoir plus

- Politiques : documents OFEN
 - → « Analyse de l'efficacité des programmes cantonaux d'encouragement dans le domaine de l'énergie», 2012
 - → « Rapport explicatif concernant la stratégie énergétique 2050 », 2012
- Statistiques : rapports OFEN
 - → « Statistique suisse des énergies renouvelables 2011» (all), 2012
 - → « Statistique suisse sur le bois énergie 2011 » (all), 2012
 - → « Statistique globale suisse de l'énergie 2011 », 2012
- Ressource : rapports OFEV
 - → « Annuaire La forêt et le bois », 2012
 - → « Potentiel d'exploitation du bois dans les forêts suisses », 2011
 - → « Politique forestière 2020 », 2011
- France
 - → Enquête CIBE « Les réseaux de chaleur au bois », 2009
 - → Enquête AMORCE « Les réseaux de chaleur au bois en 2010 », 2011
 - → Rapport ADEME « Fonds chaleur, bilan et perspectives », 2011
- A venir
 - → Rapport final Audit'bois, publié sur notre site internet