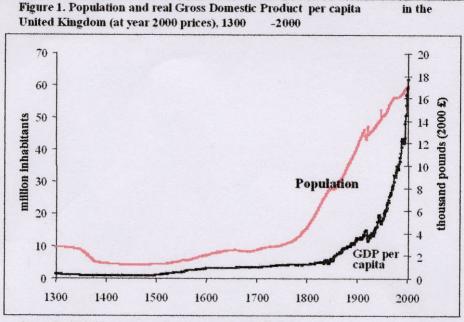
Imperial College London

Long Run Energy Use and Prices in the UK

Peter J G Pearson Centre for Energy Policy & Technology (ICEPT)

> CUEPE Geneva 1 December 2005

Introduction


- While each country's energy experience is unique
- Example of UK's long energy & environmental histories
- Helps understand
 - Scale & limits of energy's contributions to socio-economic development
 - Path dependency & 'lock-in' of fuels, technologies & institutions
 - Impacts on resource depletion & environmental quality
 - Need for policies for 'sustainable innovation' and better mixes of policy instruments
- "A lantern on the stern can help with navigation ahead."

UK Experiences and Challenges

- UK's fossil energy resources freed it from limits of an agricultural economy
- Affordability/quality of energy services enhanced by modern fuels & technologies (light example)
- But environmental issues not seriously addressed until C20
- Today's challenges for the UK
 - Continuing access to affordable, secure, diverse energy services
 - And limiting damage to local, regional & global environments
- Policies & instruments for sustainable innovation?

Energy and the UK's 'Industrial Revolution'

- 16th-19 century
 - UK moved from traditional agricultural economy
 - Bounded by productivity of scarce land resource, and
 - Limited flows of energy for food, clothing, housing & fuel
 - To a new regime
- Where growth and living standards transformed:
 - By exploiting stock of mineral (coal)
 - And innovation, steam engine, converting heat to mechanical energy
- With other innovations, drove mechanisation & urbanisation that led to the 'industrial revolution'

Source: Snooks (1994) and others, see Fouquet and Pearson (1998) for details

Fig. 2: UK final energy consumption 1500-1800 (TWh)

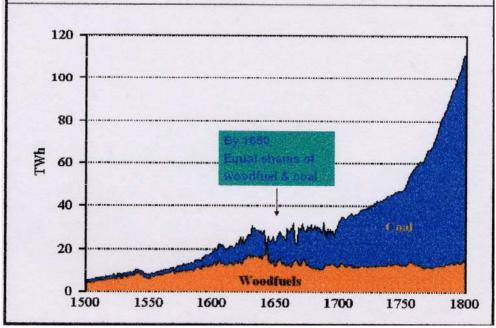


Fig. 3: UK final energy consumption, 1800-2000 (TWh)

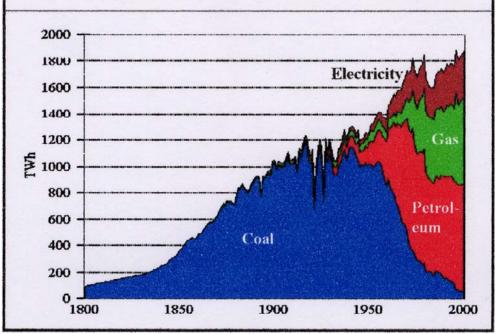
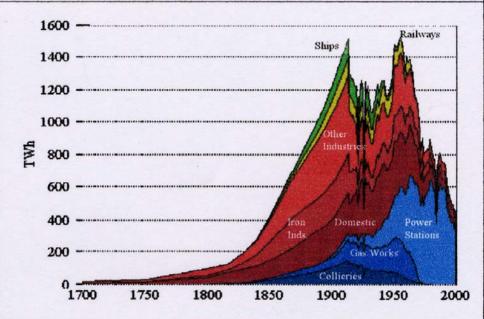



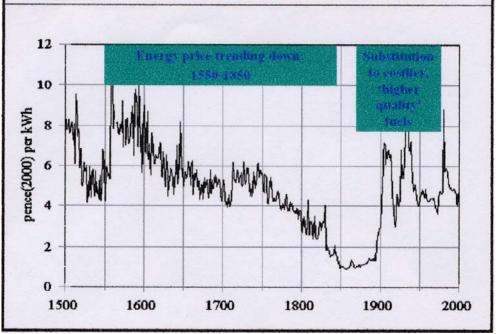
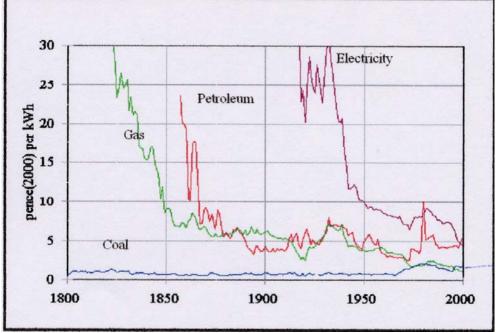
Fig. 4: Coal consumption by economic sectors, 1800-2000 (TWh)

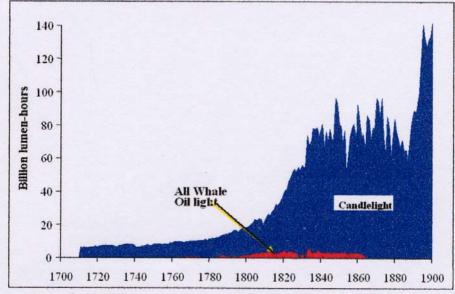
Long-run perspectives (1)

- But diffusion of new technologies took time in UK
 - E.g. major economic growth effects of stationary steam engines & then steam locomotives only after 1850
 - Although steam pumps in coal mines from 1720s
 - And electric light also slow to dominate
- And complex interactions of fuels, technologies, infrastructures, institutions & financing mechanisms underlie long-run energy transitions
- So we are dealing with evolving complex systems
- And it is not wise to limit our focus only to fuels & technologies

Fig. 5: UK energy intensity - final use energy consumption per unit real GDP, 1500-2000

Fig. 6: UK average real 'energy' price series, 1500-2000


Fig. 7: Real consumer fuel prices, 1800-2000 (p/kWh)

Energy services: UK lighting experience

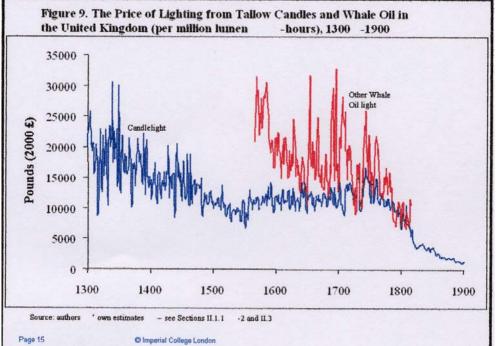
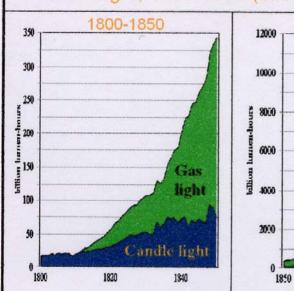
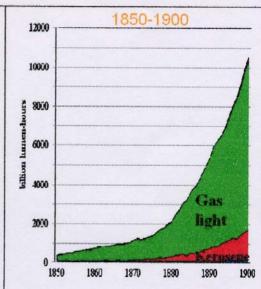

- Energy access gives benefits through energy services
 - E.g. illumination, transportation, cooked meals, refrigeration, comfortable temperatures
- Evidence of extraordinary potential of technological & institutional change
 - to reduce costs & enhance quality of energy services
 - and raise economic welfare
- Example of UK lighting services(1800-2000)
 - Innovation in fuels & technologies, improved infrastructures, mass production & rising incomes
 - Led to lower cost of illumination & revolutions in light use

Figure 8. Consumption of Lighting from Tallow Candles and Whale Oil in the United Kingdom (in billion lumen -hours), 1711-1900




Source: authors' own estimates - see Sections II 2.1 -2 and II 3
Page 14

Billion: 109 (i.e. one thousand million)

Fig. 10. UK Consumption of Gas, Kerosene & Candle Light, 1800-1900 (billion lumen-hours)

Table 1. Street Lighting in London (1599-1809)

-	Pre- 1599	1599-	1662-	1694-	By	By	By
		1662	1694	1736	1736	1750	1809

351

lamps Source: Falkus (1976 p.261)

189

Hours/

No. of

Page 17

vear

750

1,000

4,000

15,000

4,000

4,800

4,000

35,000

303

Fig. 11. UK Consumption of Kerosene, Gas and Electric Light 1900-2000 (billion lumen-hours)

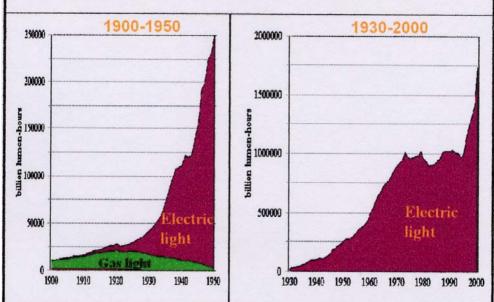
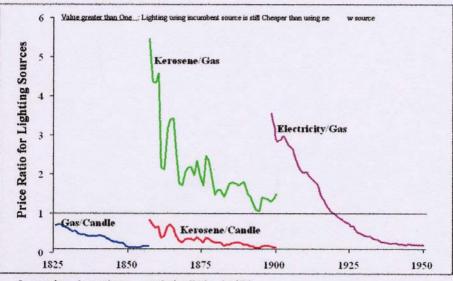



Figure 12. Price of Lighting from Gas, Kerosene and Electricity in the United Kingdom (per million lumen -hours), 1800-2000 [In UK Pounds (year 2000 €)] Gaslight Pounds (2000 €) Kerosene light Electric light

Source: authors 'own estimates - see Sections II.1.3 -5 and II.3

Figure 13. Price Ratio of Lighting from Competing Energy Sources in the United Kingdom, 1820 -1950

Source: authors 'own estimates - see Sections II.1.1 -5 and II.3

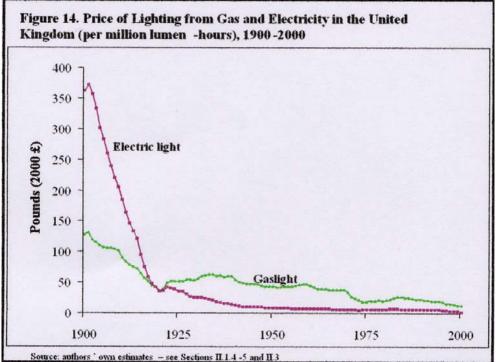
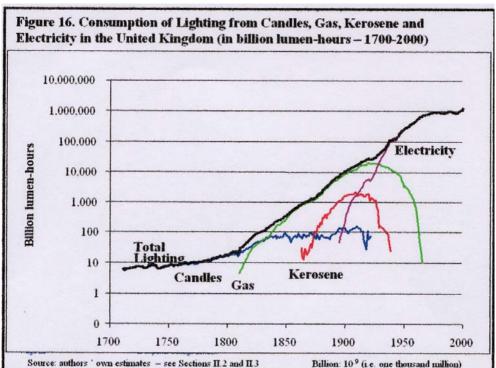



Figure 15. Indices of Key Lighting Variables in the United Kingdom (Log Scale, 1800 = 1), 1300-200010000 Light Use cap. 656 Efficiency, 1000 1000 100 GDP/cap, 15 10 Lighting price Light use per capita 0.1 Fuel price, 0.18 0.042 0.01 0.001 Light Price, 0.0003 0.0001 1300 1700 1750 1800 1850 1900 1950 2000

Source: authors' own estimates - see Section II

Long Run Trends in UK Lighting Services (1300-2000)

- By 1800 lighting services cost 1/3rd of their 1300 value.
- By 1900 lighting services cost 1/25th of their 1800 value.
- By 2000 lighting services cost 1/33000th of their 1800 value
- · GDP per capita has grown 15 times since 1800, i.e.
 - Three times (1800-1900), and
 - Five times (1900-2000)
- Total UK lighting use has risen 25,000 times since 1800
- Per capita lighting use has risen 6,600 times since 1800

Welfare Gains & Gaps between Rich & Poor

- Falling costs, rising quality & higher consumption implies big long run welfare gains in the UK.
- Also means possible growing gaps between rich & poor people because of differential access to & ability to pay for modern fuels & end-use technologies.
- The poor pay more per unit of energy service because they can't afford the first costs of the efficient technologies.
- Writing about light in Africa, van der Plas (1994) observed: "The level of services many rural households 'enjoy' now is only barely distinguishable from that of medieval Europe."

Environmental Issues: Air Pollution

- Growing 19th UK concerns
- But no serious action until 20th century
- London's long history of air pollution
 - 1952 'Great London Smog'
 - Estimated 3500-4000 premature deaths
- 1956 Clean Air Act
 - 'smokeless zones'
 - Power stations relocated
 - Later substitution to natural gas
- Concern over small particles and acid deposition
- And now greenhouse gases, especially CO2

Today's UK Energy/Environment Challenges

- Maintain access to affordable, secure, diverse energy services, and
- Limit damage to local, regional & global environments
 - New challenge of greenhouse gases
 - transitions to lower carbon energy economy?
 - UK has set some difficult long-term CO2 targets
 - UK & EU emissions trading schemes, Renewables Obligation, etc.
 - But crowded 'policy space'- need better 'mix' of instruments
 - Policies & instruments for 'Sustainable Innovation'?

UK Energy/Environment Challenges (2)

- UK aspires to follow path to cut CO2 emissions by 60% by 2050
 - A low carbon economy
 - While also achieving economic and social goals
- Requires radical transitions and systems level innovation
 - To meet end-user demands and energy and transportation services
- But we have had separate policy regimes for energy, innovation and sustainability issues

Recommendations for sustainable innovation (SI) policy processes

- (1) Develop a Sustainable Innovation policy regime
 - · With clear, long-term sustainability goals
 - That brings together innovation, energy and environmental policy regimes
- (2) Apply systems thinking
- (3) Advance procedural and institutional basis for policy delivery
- (4) Develop a more coherent and integrated mix of policy instruments to promote SI
- (5) Incorporate policy learning and review

UK Experiences and Challenges: Summary

- UK's fossil energy resources freed it from limits of an agricultural economy
- Affordability/quality of energy services enhanced by modern fuels & technologies (light example)
- But environmental issues not seriously addressed until C20
- Today's challenges for the UK
- · A Sustainable Innovation policy regime?

Sources

- Fouquet, R and Pearson, PJG (1998). 'A Thousand Years of Energy Use in the United Kingdom', *The Energy Journal*, 19(4).
- Fouquet, R and Pearson, P.J.G. (2003). 'Long Run Trends in Energy Services: The Price and Use of Road and Rail Transport in the UK (1300-2000)', Proceedings of the BIEE Conference, St John's College Oxford, September (CD-ROM): http://www.biee.org/downloads/conferences/HISLIG20.PDF
- Fouquet, R and Pearson, P J G (2003), 'Five Centuries of Energy Prices', World Economics, 4(3): 93-119.
- Fouquet, R and Pearson, P J G (2006, forthcoming): 'Seven Centuries of Energy Services: The Price and Use of Light in the United Kingdom (1300-2000)', The Energy Journal, 27(2)
- Foxon, T.J., Pearson, P., Makuch, Z. and Mata, M. (2005), 'Transforming policy processes to promote sustainable innovation: some guiding principles', Report for policy-makers, March 2005, ISBN 1 903144 02 7. Imperial College London.

www.sustainabletechnologies.ac.uk/PDF/project%20reports/SI policy

guidance final version.pdf